

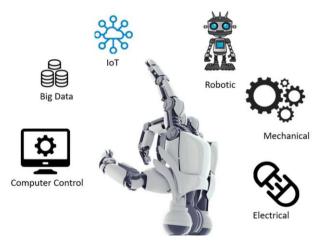
Program Studi Sarjana Terapan Teknologi Rekayasa Mekatronika

Politeknik Negeri Cilacap

Jl. Dr. Soetomo No 1, Sidakaya

sekretariat@pnc.ac.id

0282 - 537992



trmk_pnc

1 Pengantar

Kurikulum adalah seperangkat rencana dan pengaturan mengenai tujuan, isi, dan bahan pelajaran serta cara yang digunakan sebagai pedoman penyelenggaraan kegiatan pembelajaran untuk mencapai tujuan pendidikan tinggi. Kurikulum harus memuat capaian pembelajaran mengacu pada Permendikbud No. 3 Tahun 2020 tentang Standar Nasional Pendidikan Tinggi (SN-Dikti) dan deskripsi level 6 (enam) Kerangka Kualifikasi Nasional Indonesia (KKNI) sesuai Perpres Nomor 8 Tahun 2012, dan yang terstruktur untuk tercapainya tujuan, terlaksananya misi, dan terwujudnya visi keilmuan program studi.

Tuntutan industri yang semakin tinggi menuntut peran pendidikan vokasi untuk mempersiapkan lulusan yang siap memasuki dunia kerja. pendidikan vokasi diharapkan dapat memberi kontribusi nyata dalam mencetak sumber daya manusia (SDM) yang unggul. SDM unggul inilah yang nantinya akan memenangkan persaingan dalam pemenuhan kebutuhan sumber daya yang produktif dan pada akhirnya dapat membawa Indonesia menjadi pemenang di era persaingan global Program studi teknologi rekayasa mekatronika hadir di saat persaingan era globalisasi dan revolusi industri 4.0. Mekatronika merupakan ilmu yang mengkombinasikan secara sinergis rekayasa mekanika, elektronika, dan kontrol. Pada awal perkembangannya, mekatronika hanya mencakup unsur mekanika dan elektronika saja. Dengan ditemukannya mikroprosesor pada tahun 1980an, keilmuan mekatronika menjadi lebih maju dan berkembang. Mekatronika kemudian didukung oleh disiplin ilmu lain diantaranya: embedded system yang memberikan nuansa hardware programming yang menghubungkan mekanik dan elektronik, juga control system yang memberikan kecerdasan buatan kepada sistem tersebut.

Gambar 1.1 Keilmuan Mekatronika

Pendidikan vokasi seharusnya memiliki sinergi untuk kebutuhan industri dan memiliki kemampuan literasi digitalisasi. Kemampuan ini selanjutnya akan dituangkan dalam kurikulum program studi teknik mekatronika yang ditekankan pada kemampuan literasi data, teknologi dan manusia sebagai modal dasar untuk berkiprah di masyarakat. Politeknik Negeri Cilacap melalui

program studi teknologi rekayasa mekatronika akan menjembatani antara civitas akademika dengan kebutuhan industri dengan cara membekali masyarakat tentang wawasan teknologi 4.0 agar terciptanya link and match antara pendidikan vokasi dan industri. Tujuan akhir dari penyusunan kurikulum ini adalah agar masyarakat percaya terhadap pendidikan vokasi di politeknik selain untuk siap kerja di industri, juga siap bersaing di era globalisasi dan perdagangan bebas antar negara yang semakin terbuka.

Mekatronika dan teknologi informasi membutuhkan solusi terbaru di bidang otomasi, oleh karena itu masyarakat khususnya Kabupaten Cilacap harus bersiap untuk dapat bersaing atau unggul dalam bidang aplikasi mekatronika khususnya *energy saving, food and agriculture, dan clean power*. Aplikasi *Energy saving* merupakan aplikasi penyimpanan energi untuk mengurangi konsumsi daya, aplikasi Food and agriculture yaitu aplikasi memperkenalkan produksi pada bidang makanan dan pasar agrikultur seperti smart farming untuk mengendalikan dan memonitor kebutuhan perkebunan menggunakan teknologi, sedangkan aplikasi *Clean Power* untuk membangun masyarakat yang mampu berkreasi dalam bidang energi dan aplikasi penyimpanan

Politeknik Negeri Cilacap melalui program studi mekatronika akan mencetak generasi unggul yang mampu berkreasi di bidang aplikasi mekatronika. Tenaga ahli yang mampu merancang dan membangun mesin otomatis didapatkan melalui breakdown profil lulusan teknik mesin sedangkan menggabungkan mesin dengan perangkat sistem kontrol dan elektronik didapatkan dari profil lulusan program studi sejenis yaitu teknik elektronika. keterampilan yang penting dalam bidang mekatronika yang lainnya adalah mampu merancang dan membangun program dan komunikasi data untuk pendukung otomasi industri sehingga dapat diimplementasikan terhadap profil lulusan teknik informatika. Program Studi Mekatronika merupakan program studi dari jurusan teknik elektronika dimana substansi mata kuliah merupakan hasil kolaborasi 3 jurusan yaitu jurusan mesin, elektronika, informatika.

IDENTITAS PROGRAM STUDI SARJANA TERAPAN TEKNOLOGI REKAYASA MEKATRONIKA

Program Studi : Sarjana Terapan Teknologi Rekayasa Mekatronika

Unit Pengelola Program Studi :Politeknik Negeri Cilacap
Perguruan Tinggi : Politeknik Negeri Cilacap

Nama Pemimpin Perguruan Tinggi : Riyadi Purwanto, S.T., M.Eng

Alamat : Jln. Dr. Soetomo No. 1, Sidakaya Cilacap,

Jawa Tengah 53212

Nomor Telepon Kantor : 0282-533329

Alamat Surat Elektronik (e-mail) : sekretariat@pnc.ac.id
Narahubung Perguruan Tinggi : Hendi Purnata, S.Pd., M.T

Alamat : Perumahan Taman Patra Indah Blok B1 No 24,

Cilacap

Nomor Telepon/Telepon Genggam : 081215600349

Alamat Surat Elektronik (e-mail) : hendipurnata@pnc.ac.id

2 Lembaran Pengesahan

POLITEKNIK NEGERI CILACAP Jalan Dr. Soetomo No. 1, Sidakaya, Cilacap Telepon: (0282) 533329, Fax: (0282) 537992 Laman: www.pnc.ac.id

Nomor: KPT.2.TE.D3

DOKUMEN KURIKULUM

Revisi: 00 Halaman : ...

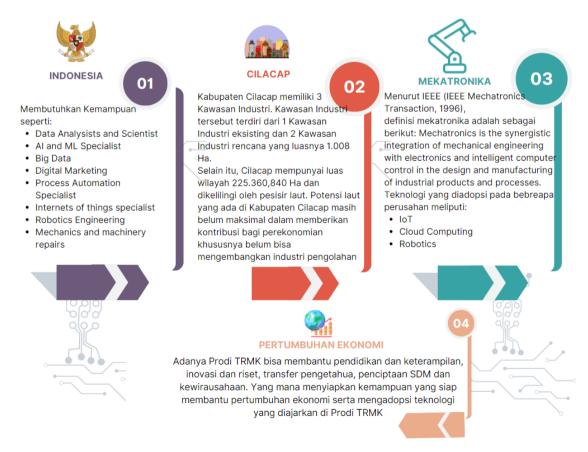
Proses	Pe	Tanggal			
110303	Nama	Jabatan	Tanda Tangan	runggar	
Perumus	Hendi Purnata	Koordinator			
retuttius	Hendi Fumata	Program Studi			
Pemeriksa	Cahyo Trileksono	P4MP			
Persetujuan	Bayu Aji Girawan	Wakil Direktur 1			
Penetapan	Riyadi Purwanto	Direktur			
Pengendalian	Artdhita Fajar Pratiwi	P4MP			

3 Prangkat Kurikulum

3.1 Analisis Konsideran.

3.1.1 Konsideran 1

Dalam world economy forum future job report bahwa Indonesia membutuhkan kemampuan dalam bidang informatika seperti AI and ML Specialist, Big Data, Digital Marketing, kemudian dalam bidang mekanik seperti Process Automation Specialist dan bidang elektronik seperti Robotics Engineering. Dari beberapa kemampuan tersebut bahwasanya Indonesia memang memerlukan kemampuan mekatronika yang mencakup mekanik, elektrik dan informaatika. Dengan mempersiapkan kemampuan mekatronik, Indonesia akan memiliki sumber daya manusia yang Tangguh dan siap menghadapi tantangan masa depan yang lebih baik.


Kabupaten Cilacap memiliki 3 Kawasan Industri. Kawasan Industri tersebut terdiri dari 1 Kawasan Industri eksisting dan 2 Kawasan Industri rencana yang luasnya 1.008 Ha. Insfrastruktur untuk bisa memenuhi kebutuhan kawasan industri salah satunya pendidikan untuk bisa menyiapkan tenaga kerja pada bidangnya. Keberadaan industri-industri besar di Kabupaten Cilacap yang meliputi industri pada bidang sumber energi dan ketenagalistrikan seperti PLTU Bunton yang merupakan sumber energi Jawa-Bali dan Cilacap Steam Power Plant (PLTU Karangkandri), Sistem instrumentasi pada Industri minyak dan gas seperti PT Kilang Pertamina Intenational (Persero) Unit Pengolahan IV Cilacap yang memasok 34% kebutuhan BBM Nasional, industri semen Solusi Bangun Indonesia, industri pengolahan tepung terigu, industri pengalengan ikan tuna, dan industri-industri besar lainnya.

Selain itu, Cilacap terletak diantara 108°4-30° - 109°30°30° garis Bujur Timur dan 7°30° - 7°45°20° garis Lintang Selatan, mempunyai luas wilayah 225.360,840 Ha. Potensi laut yang ada di Kabupaten Cilacap masih belum maksimal dalam memberikan kontribusi bagi perekonomian. Meskipun memiliki potensi yang besar, masih banyak nelayan kecil dan menengah yang mengalami kesulitan dalam memasarkan hasil tangkapan mereka. Diperlukan upaya untuk memperbaiki distribusi dan pemasaran hasil tangkapan, serta belum bisa mengembangkan industri pengolahan ikan di Kabupaten Cilacap.

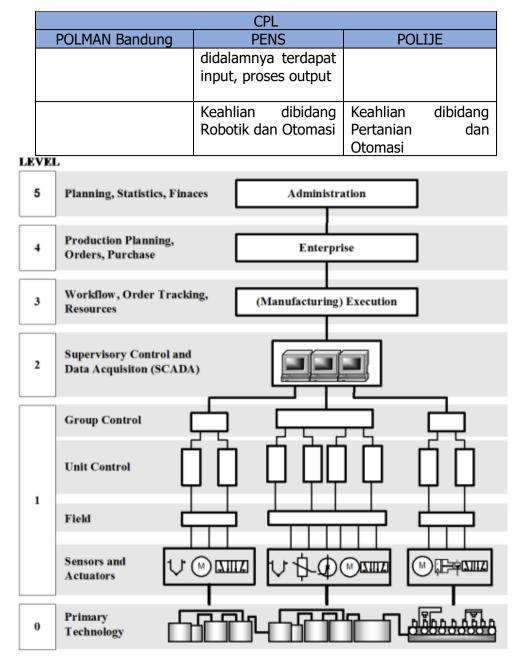
Dengan mempersiapkan Indonesia dan Kabupaten Cilacap menjadi lebih baik lagi, maka kemampuan mekatronika yang memang berfokus kepada elektronik, mekanik, informatika dan kendali akan tepat sasaran yang dibutuhkan oleh Indonesia dan industri. Dengan mengembangkan kompetensi dalam mekatronika, akan tercipta tenaga kerja yang mampu mengintegrasikan teknologi elektronik, mekanik, dan informatika dalam pengembangan sistem dan produk inovatif. Hal ini akan mendukung pertumbuhan sektor industri, mempercepat digitalisasi, dan mendorong transformasi teknologi di berbagai sektor,

seperti manufaktur, energi, pertanian, transportasi, dan lainnya. Dengan kemampuan mekatronika yang kuat, Indonesia dapat menjadi negara yang mandiri dalam menciptakan teknologi terkini dan meningkatkan daya saing global. Kabupaten Cilacap juga akan menjadi pusat pengembangan keahlian mekatronika yang berpotensi memberikan kontribusi besar dalam menggerakkan industri dan ekonomi lokal, serta menciptakan lapangan kerja yang berkualitas.

Mekatronika merupakan miltidisplin ilmu tetapi terdapat beberapa kategori pada kluster industri yang dikatakan spesifik pada keilmuan mekatronika yaitu pada industri otomotiv dan aerospace, teknologi energi dan penggunaanya, minyak dan gas, engineering and construction, advanced manufacturing, electronics, dan lain-lain. Pada job family architecture and engineering yang membutuhkan okupasi seperti electrotrchnology enginering, industrial and production engineering, materials engineering dan mechanical engineering. Indonesia teknologi dan impact pada pekerjaan seperti IoT sebesar 59%, Artificial Intelligence sebesar 54% tergolong tinggi dengan keilmuan seperti informatika dan elektronik yang merupakan bidang keilmuan pada program studi teknologi rekayasa mekatronika.

Gambar 3.1 Consideran 1 pada Prodi Mekatronika

Tabel 3.1Siap keja dan Siap Usaha


Siap Kerja	Siap Usaha			
Kebutuhan kemampuan yang meliputi dalam lingkup mekatronika (Mekanik, elektronik, Informatika dan kendali) yaitu: 1. Artificial Intelligent and Machine Learning Specialist (40%) 2. Data Analysts and Scientist (34%) 3. Project Manager (25%) 4. Robot Engineering (19%) 5. Assembly and factory worker (17%)	Pertumbuhan ekonomi khususnya di Kabupaten Cilacap bisa menyiapkan mahasiswa untuk usaha dalam bidang jasa dan pembuatan system mekatronika dengan kemampuan kepemimpinan dalam project manager.			
Kebutuhan teknologi yang diadopsi oleh industry-industri dalam lingkup mekatronika yaitu: 1. IoT and connected device (59%) 2. Artificial intelligence (e.g. machine learning, neuralnetworks) (54%)	Serta menjadi konsultan dibidang data analysist dibutuhkan pada tiap-tiap sector industri			
 Robots, non-humanoid (industrial automation, drones, etc.) (43%) Cloud Computing (42%) 				

3.1.2 Consideran 2

Dari kemampuan yang diberikan untuk menciptakan lulusan yang berkualitas, fokus keilmuan ditekankan pada kemampuan khusus dalam bidang otomasi industri dan robotics. Otomasi industri merupakan sistem yang terintegrasi dari field level yang merupakan sensor dan actuator, kemudian lebel kedua yaitu control level sebagai integrasi antara sensor dan actuator serta level paling tinggi yaitu SCADA level sebagai interaksi antara manusia dan mesin yang lebih harmoni. Sedangkan, robotik merupakan cabang ilmu yang menggabungkan bidang ilmu komputer, teknik mekanika, dan teknik elektronika untuk merancang, membangun, dan mengoperasikan robot. Robotik mencakup pengembangan sistem robotik yang dapat berinteraksi dengan lingkungannya, melakukan tugas-tugas tertentu, dan bahkan mengambil keputusan secara mandiri. Kedua cabang ilmu merupakan serumpun dan bisa menjadi spesialis dibidangnya masing-masing. Pada analisa consideran ini merupakan perbandingan antara beberapa kampus yang telah menjalani program studi dan pelaksanaan kurikulumnya. Berikut beberapa perbandingan CPL.

Tabel 3.2 Hasil Perbandingan dari Benchmark Kurikulum

	CPL	_	
POLMAN Bandung	PEN	IS	POLIJE
Berfokus kepada nano teknologi dan Otomasi			Berfokus kepada CAD dan CAM, PLC, HMI,
	yang	mana	

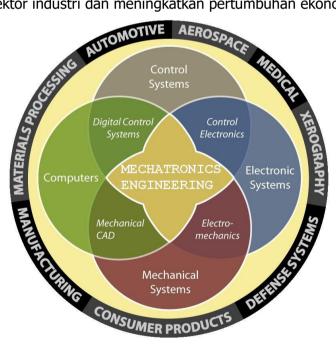
Gambar 3.2 Hirarki Otomasi Industri

Dari struktur mata kuliah diatas maka bisa diringkas seperti table di bawah ini.

Tabel 3.3 Struktur Mata Kuliah dari Prodi Sejenis

Camanaham	Struktur Mata Kuliah								
Semester	POLMAN Bandung	PENS	POLIJE						
Semester 1	Dasar mekatronika	Dasar mekatronika	Dasar mekatronika						
Semester 2	Tingkatan dasar mekatronika	Tingkatan dasar mekatronika	Tingkatan dasar mekatronika						
Semester 3	Field Instrument Untuk otomasi	Tingkatan dan Field Instrumen untuk Otomasi industry	Intermediate Elektrikal dan Mekanikal						
Semester 4	HMI untuk otomasi industry	Tingkatan lebih tinggi dari semester	Field Instrument Untuk otomasi						

Camanaham	Struktur Mata Kuliah							
Semester	POLMAN Bandung	PENS	POLIJE					
		sebelumnya yaitu otomasi industry						
Semester 5	Tingkatan untuk perangkat elektronik dan desain pembuatan otomasi industry	Focus bidang Robotik	Tingkatan Field Instrument Untuk otomasi Fokus bidang agroteknologi					
Semester 6	Pembuatan dan Implementasi produk	Pra-Implementasi	Pra Implementasi					
Semester 7 & 8	Implementasi dan penggunaan metode yang lebih advanced	Implementasi dan penggunaan metode yang lebih advanced	Implementasi					

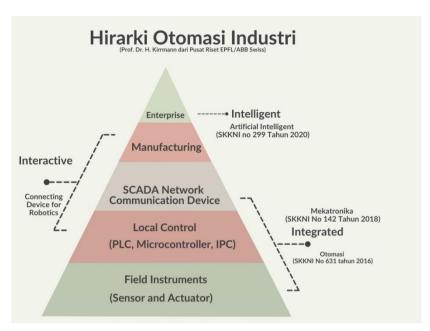

Pada struktur mata kuliah yang disebutkan di atas, terdapat penjelasan mengenai perkembangan dan penekanan pada keilmuan mekatronika dalam setiap semester. Semester 1 fokus pada konsep mekatronika dengan penekanan pada mekanik, elektronik, dan informatika. Pada semester 2, pemahaman mekatronika ditingkatkan ke tingkat yang lebih lanjut. Pada semester 3, diajarkan hirarki pertama otomasi industri, yaitu level perangkat lapangan (field instrument) yang meliputi sensor dan aktuator. Polije memiliki pendekatan yang berbeda dengan tingkat yang lebih matang dalam pondasi mekatronika. Pada semester 4, karakteristik ketiga politeknik tersebut berbeda-beda. POLMAN Bandung sudah mencapai level keempat, yaitu SCADA (Supervisory Control and Data Acquisition) dan HMI (Human-Machine Interface), sedangkan PENS fokus pada level kontrol, dan Polije baru memasuki sistem otomasi industri pada perangkat lapangan. Semester 5 memiliki pemfokusan bidang yang berbeda-beda. POLMAN Bandung lebih fokus pada otomasi industri dengan perancangan dan pembuatan sistem otomasi industri, sementara PENS fokus pada robotic, dan Polije pada agroteknologi. Pada semester 6, ketiga politeknik tersebut memiliki kesamaan dalam pra-implementasi dan beberapa proyek untuk pelaksanaan Merdeka Belajar Kampus Merdeka (MBKM). Semester 7 dan 8 merupakan tahap implementasi dari keilmuan yang diperoleh dari semester 1 hingga 6 untuk menyelesaikan Proyek Akhir.

Pada struktur mata kuliah praogram studi sejenis di Polman memiliki total 61 mata kuliah dengan jumlah SKS sebanyak 144, sementara pens memiliki 59 mata kuliah dengan total 148 SKS. Di sisi lain, Polije memiliki 54 mata kuliah dengan total 144 SKS. Semua program studi vokasi ini dengan beragam mata kuliah dengan keahlian khususnya mengacu pada otomasi industri.

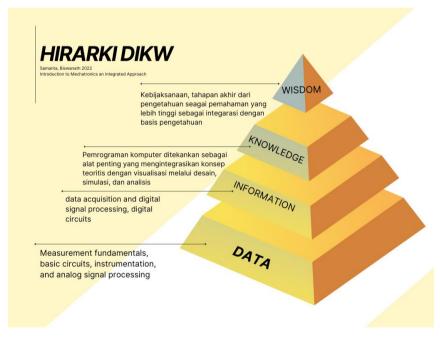
3.1.3 Consideran 3

Dari analisis consideran pertama yang membutuhkan kemampuan informatika untuk pengolahan data menjadi analisis dan ilmuwan, serta analisis considera kedua dengan adanya keilmuan otomasi industri, terlihat bahwa perkembangan ilmu pengetahuan yang sering diadopsi oleh industri terjadi pada sistem otomasi, robotik, Internet of Things (IoT), dan kecerdasan buatan (AI). Pada analisis ini, penekanan lebih diberikan pada kemampuan untuk memenuhi kebutuhan industri otomasi, AI, dan robotik, serta kemampuan yang dapat dimanfaatkan oleh lulusan untuk menganalisis data dan mengimplementasikan sistem mekatronika.

Dari analisis di atas, dapat disimpulkan bahwa keilmuan mekatronika yang berfokus pada mekanik, elektronik, informatika dan kendali dapat diimplementasikan dalam sistem otomasi industri untuk memanfaatkan potensi yang ada di masing-masing daerah dan robtika untuk pengembangan sistem yanh berguna bagi lingkungan. Contohnya, Polije dapat memanfaatkan keahlian mekatronika dalam industri pertanian, sedangkan Polman dapat menggabungkan mekatronika dengan nanoteknologi dan robotik. Analisis ini menunjukkan bahwa dengan menekankan keilmuan otomasi industri dan memanfaatkan potensi industri perikanan di daerah Cilacap, dapat menciptakan peluang yang berpotensi untuk mengembangkan sektor industri dan meningkatkan pertumbuhan ekonomi.

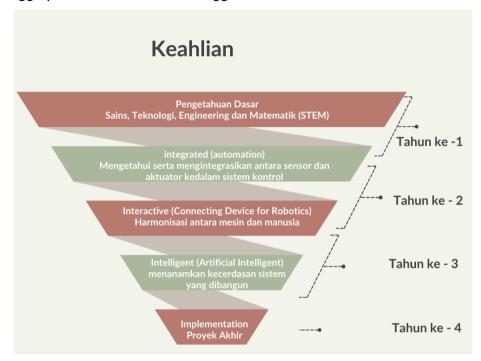

Gambar 3.3 Keilmuan dari Mekatronika(https://commons.wikimedia.org/w/ index.php?curid=18314501, Kevin Craig, 1995)

Selain itu, dalam era pasca pandemi atau endemik ini, lulusan perlu disiapkan untuk dapat beradaptasi dan mengatasi tantangan yang kompleks, seperti perubahan lingkungan akibat perubahan iklim, dinamika ekonomi dalam bidang bioteknologi, serta pertumbuhan populasi global yang cepat. Kemampuan yang harus dimiliki lulusan tidak hanya terbatas pada kemampuan kognitif, tetapi juga meliputi kemampuan meta-kognitif, seperti berpikir kritis, berpikir kreatif, kemampuan belajar secara mandiri (learning to learn), dan kemampuan mengatur diri (self-regulation), yang menjadi landasan untuk pengembangan kemampuan lainnya. Selain itu, lulusan juga harus memiliki keterampilan sosial dan emosional, seperti empati, efikasi diri, dan kemampuan berkolaborasi, serta keterampilan fisik dalam memanfaatkan informasi dan teknologi komunikasi. Dalam analisis di atas, terlihat jelas bahwa lulusan harus memiliki keseluruhan kemampuan ini agar dapat bersaing secara kompetitif di tingkat nasional maupun global.



Gambar 3.4 Perbandingan kemampuan dan keahlian yang dibutuhkan

Dari kemampuan dan keahlian diatas maka, dapat dirumuskan kompetisi utama dari Program Studi teknologi Rekayasa Mekatronika ini yaitu ahli dari bidang mekatronika yang memiliki keahlian AI, Robot dan IoT dengan Intelligent, integrated dan interactive. Tetepi untuk tidak melebar kejauhan maka difokuskan pada Otomasi dan Robot dengan dibekali juga keilmuan AI serta IoT yang mendasarkan skema okopansi yang ada di Indonesia.


Gambar 3.5 Keilmuan Mekatronika

Gambar 3.6 Hirarki DIKW

Hirarki DIKW (Data, Informasi, Pengetahuan, Kebijaksanaan) memiliki peran krusial dalam bidang mekatronika. Saat data diambil dari berbagai sensor dan perangkat mekatronika, langkah pertama dari hierarki ini terjadi. Namun, nilai sejati muncul saat data diubah menjadi informasi yang bermakna melalui analisis dan pemrosesan. Informasi ini mengarah pada pengetahuan yang lebih mendalam, di mana prinsip-prinsip fundamental dari mekanika, elektronika, dan pemrograman diaplikasikan untuk merancang dan mengembangkan sistem mekatronika yang canggih. Namun, puncak yang diinginkan dari hierarki DIKW adalah kebijaksanaan (wisdom). Kebijaksanaan diperoleh ketika pengetahuan ini digunakan untuk mengambil keputusan strategis yang cerdas dalam merancang,

mengoptimalkan, dan mengoperasikan sistem mekatronika. Dengan memahami implikasi jangka panjang dari keputusan ini dan mengintegrasikan pengetahuan lintas disiplin, para profesional mekatronika mampu mencapai inovasi yang signifikan dan memberikan kontribusi nyata pada kemajuan teknologi dalam berbagai bidang aplikasi, dari otomasi industri hingga perawatan kesehatan canggih.

Gambar 3.7 Keahlian Tiap tahun pada Prodi TRMK

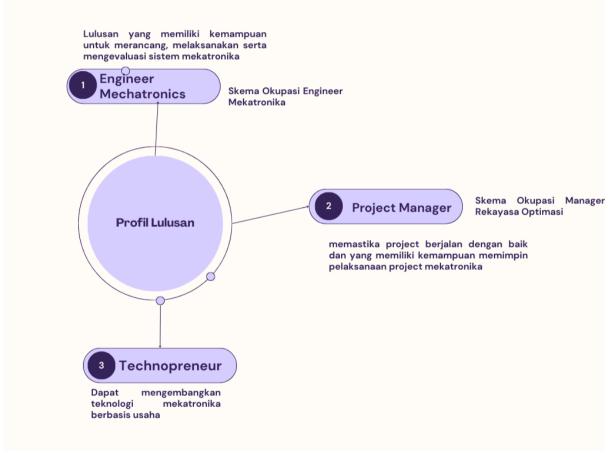
Dalam rentang waktu empat tahun, tujuan utama adalah mencetak Sumber Daya Manusia (SDM) yang memiliki keahlian di bidang elektronik, mekanik, informatika, dan teknologi kendali, menjadikan mereka ahli dalam ranah otomasi dan robotik. Tahun pertama dimulai dengan penguatan pengetahuan dasar, mengokohkan fondasi yang diperlukan. Tahun kedua, fokus bergeser ke integrasi, di mana mahasiswa mulai memahami dan mengintegrasikan sensor dan aktuator ke dalam sistem kontrol. Pada tahun ketiga, mahasiswa terlibat dalam pengembangan sistem yang lebih kompleks, memperdalam interaksi antara sensor dan menjalankan harmonisasi antara mesin dan aspek manusia. Tahun keempat menandai langkah signifikan dalam penerapan kecerdasan buatan dalam sistem, menghasilkan sistem yang semakin pintar dan adaptif. Puncak perjalanan ini adalah proyek akhir, di mana mahasiswa memanfaatkan seluruh tingkatan pembelajaran, mulai dari pengetahuan dasar hingga kecerdasan buatan, untuk mengimplementasikan solusi otomasi dan robotik yang nyata, mencerminkan kemahiran mereka dalam pendekatan berjenjang dari dasar hingga aplikasi canggih.

3.1.4 Consideran 4

Dengan Tingkat penguasaan pengetahuan sesuai Standar Isi Pembelajaran dengan level kuaifikasi 6 yaitu menguasai konsep teoritis bidang pengetahuan dan keterampilan tertentu secara umum dan konsep teoritis bagian khusus dalam bidang pengetahuan dan keterampilan tersebut secara mendalam, serta Kata kunci untuk rumusan ketrampilan khusus Mengaplikasikan, mengkaji, membuat desain, manfaatkan IPTEKS dalam menyelesaikan masalah prosedural. Berdasarkan analisis dari consideran 1 sampai consideran 3, didapatkan rumusan rancangan Curriculum Program Level (CPL). Ilmu keilmuan yang terdapat pada Otomasi dan Robotik dibekali dengan pengetahuan dasar mekatronika, seperti elektronika, mekanika, informatika, dan kendali. Keilmuan ini akan menjadi dasar kurikulum yang akan diimplementasikan dalam visi misi program studi teknologi rekayasa mekatronika.

LEVEL	GRADASI PENGETAHUAN Minimal yang harus dikuasai dalam deskripsi KKNI	Kesetaraan	LEVEL	GRADASI KEMAMPUAN KERJA minimal dalam deskripsi KKNI	Kesetaraan
9	falsafah	S3	9	Pendalaman dan perluasan IPTEKS, riset multi-transdisiplin	S3
8	Teori	S2	8	Mengembangkan IPTEKS melalui riset inter/multi disiplin, inovasi, teruji.	S2
7	Teori dan teori aplikasi	Profesi	7	Mengelola sumber daya, menerapkan, minimal setara standar profesi, mengevaluasi, pengembangan strategis organisasi.	Profesi
6	konsep teoritis bidang pengetahuan tertentu secara umum dan konsep teoritis bagian khusus dalam bidang pengetahuan tersebut secara mendalam	S1/D4	6	Mengaplikasikan, mengkaji, membuat desain, memanfaatkan IPTEKS, menyelesaikan masalah.	S1/D4
5	konsep teoritis bidang pengetahuan tertentu secara umum	D3	5	menyelesaikan pekerjaan berlingkup luas, memilih berbagai metode	D3
4	prinsip dasar bidang keahlian tertentu	D2	4	menyelesaikan tugas berlingkup luas dan kasus spesifik , memilih metode baku	D2
3	pengetahuan operasional yang lengkap, prinsip-prinsip serta konsep umum	D1	3	melaksanakan serangkaian tugas spesifik,	D1
2	pengetahuan operasional dasar dan pengetahuan faktual	Lulusan	2	melaksanakan satu tugas spesifik	Lulusan SMA
1	bidang kerja yang spesifik pengetahuan faktual	SMA	1	melaksanakan tugas sederhana, terbatas, bersifat rutin, dibawah pengawasan langsung	

Gambar 3.8 Gradasi KKNI pada Jenjang Pendidikan


Kurikulum diimplementasikan sebagai penunjang yang strategis untuk mencapai visi dan misi program studi, dengan memberikan pendekatan pembelajaran yang komprehensif dan mendalam dalam bidang teknologi rekayasa mekatronika. Di dalam kehidupan perkuliahan, program studi memiliki visi dan misi yang menjadi kompas bagi setiap langkah dan keputusan yang diambil. Visi sebagai gambaran masa depan yang diidamkan, dan misi sebagai tujuan-tujuan strategis yang menjadi fokus pengembangan. Dalam konteks program studi, visi dan misi menjadi landasan utama dalam menghasilkan lulusan yang berkualitas dan siap menghadapi tuntutan dunia industri. Berikut rancangan visi dan misi Program Studi Teknologi Rekayasa Mekatronika.

Tabel 3.4 Visi Keilmuan Prodi Teknonlogi Rekayasa Mekatronika

	PNC	Prodi TRMK		
Visi Keilmuan	"Menjadi perguruan tinggi yang unggul dan berkontribusi bagi masyakat"	Menjadi program studi yang bisa berkontribusi bagi masyarakat dalam		
		bidang otomasi dan Robotika		

3.2 Capaian Pembelajaran Lulusan

Dalam era dinamis ini, Program Studi Teknologi Rekayasa Mekatronika bertujuan untuk melahirkan lulusan yang siap menghadapi tantangan masyarakat dan dunia kerja yang terus berkembang. Kami berkomitmen untuk mempersiapkan para lulusan dengan landasan pendidikan yang kokoh dan kemampuan lintas disiplin dalam bidang elektronik, mekanik, informatika, dan teknologi kendali. Melalui pendekatan berjenjang yang mencakup pengetahuan dasar, integrasi teknologi, interaksi manusia-mesin, dan kecerdasan buatan, para lulusan kami akan menjadi agen perubahan yang mampu mengaplikasikan solusi otomasi dan robotik yang inovatif, serta berperan dalam memajukan masyarakat dan dunia industri dengan penuh kompetensi dan etika profesional.

Gambar 3.9 Profiil Lulusan

Tabel 3.5 Profil Lulusan

Profil Lulusan	Deskripsi	Kemampuan				
Engineer	Lulusan yang memiliki	Mampu menerapkan konsep matematika teknik, kinematika, elektronika, manufaktur, dan				
Mechatronics	kemampuan untuk	perancangan rekayasa mekatronika				
	merancang, melaksanakan	Mampu merancang proyek teknologi rekayasa mekatronika dengan cara analisa rangkaian				
	serta mengevaluasi sistem	elektronika, mekanik, informatik dan kendali dalam lingkup jasa dan produk				
	mekatronika	Mampu memilih komponen sensor dan aktuator dengan menerapkan teknik akuisisi data dan				
		metode pengolahan sinyal dalam bidang otomasi dan robotik				
		Mampu memodelkan sistem elektronik, mekanik, informatik dan kendali secara matematis				
		dalam menerapkan dan pengembangan bidang otomasi dan robotik				
		Mampu menerapkan metode mekaktronika dengan cara konsep statik, kinematika, dinamik,				
		kekuatan bahan, standar teknik dan proses manufaktur untuk menerapkan rancang bangun,				
		karakterisasi, analisis dan identifikasi permasalahan pada bidang otomasi dan robotik				
		Mampu menerapkan sistem otomasi dengan metode sistem kendali konvesional dan modern				
		untuk meghasilkan sistem yang cerdas, adaptif dan robust				
		Mampu mengaplikasikan perangkat dari sistem otomasi industry kedalam perangkat lunak				
		(firmware) yang berbasis IoT dengan memperhatikan desain, data, konektifitas, serta				
		keamanan perangkat untuk menghasilkan sistem otomasi yang bisa diakses kapanpun dan				
		dimanapun.				
		Mampu untuk bertanggung jawab kepada masyarakat dan mematuhi etika profesi dalam				
		menyelesaikan permasalahan teknik.				

Profil Lulusan	Deskripsi	Kemampuan
		Mampu menguasai konsep teknik karakterisasi, analisis, dan interpretasi data/informasi serta
		identifikasi permasalahan untuk mengembangkan sistem otomasi dan robotika berdasarkan
		prinsip-prinsip rekayasa dan metodologi yang telah diakui benar dan baik.
		Mampu menguasai konsep komunikasi data berbasis internet untuk dapat mengintegrasikan
		antar piranti kedalam sistem mekatronika sebagai komunikasi antar piranti
Project Manager	Lulusan yang memiliki	Mampu bertanggung jawab atas pencapaian hasil kerja kelompok dan melakukan supervisi
	kemampuan dalam	dan evaluasi terhadap penyelesaian pekerjaan yang ditugaskan kepada pekerja yang berada
	penanganan project berjalan	di bawah tanggungjawabnya
	dengan baik dan lulusan yang	Mampu merancang proyek rekayasa mekatronika dengan menggunakan perangkat desain
	memiliki kemampuan	untuk menghasilkan rancangan sistem mekatronika dalam bidang otomasi dan robotik yang
	memimpin pelaksanaan	mempertimbangkan faktor ekonomis, standar regulasi, ergonomis pada proses manufaktur
	project mekatronika	mampu melakukan proses evaluasi diri terhadap kelompok kerja yang berada dibawah
		tanggung jawabnya, dan mampu mengelola pembelajaran secara mandiri
		Mampu bekerja dalam tim lintas disiplin dan lintas budaya.
		Mampu memelihara dan mengembangkan jaringan kerja sama dan hasil kerja sama di dalam
		maupun di luar lembaganya
		mampu memelihara efektivitas hubungan di tempat kerja dengan menerapkan komunikasi
		yang baik secara lisan maupun tertulis
		Mampu menunjukkan kinerja mandiri, bermutu, dan terukur
Technopreneur		Mampu menguasai teori kebutuhan pasar dengan memanfaatkan inovasi teknologi
		mekatronika kepada masyarakat/mitra yang membutuhkan

Profil Lulusan	Deskrips	Si	Kemampuan		
	Lulusan yang memiliki		Mampu menguasai pengetahuan operasional rencana bisnis yang berbau teknologi bidang		
	kemampuan dalam		mekatronika dan mengimplementasikan sebagai peluang yang bermanfaat bagi masyarakat.		
	mengembangkan usaha		Mampu untuk bertanggung jawab kepada masyarakat dan mematuhi etika profesi dalam		
	berbasis teknologi		menyelesaikan permasalahan teknik.		
	mekatronika				

Tabel 3.6 Capaian Pembelajaran Lulusan

	SIKAP		Keterampilan Umum		Keterampilan Khusus		Pengetahuan
A.	Bertakwa kepada Tuhan Yang	A.	•	Α.		A.	Mampu menguasai konsep
	Maha Esa		pemikiran logis, kritis,		technology,engineering and		matematika teknik,
B.	dan mampu menunjukkan		inovatif, bermutu, dan terukur		matematika (STEM) ke dalam		kinematika, elektronika,
	sikap religius;		dalam melakukan pekerjaan		proyek teknologi rekayasa		manufaktur, dan perancangan
			yang spesifik di bidang		mekatronika untuk		rekayasa yang diperlukan
C.	Menjunjung tinggi nilai		keahliannya serta sesuai		menyelesaikan permasalahan		untuk analisis dan
	kemanusiaan dalam		dengan standar kompetensi		dalam bidang otomasi dan		perancangan komponen,
	menjalankan tugas		kerja bidang yang		robotik		bagian, dan sistem
	berdasarkan agama, moral,	_	3	B.	Mampu merancang proyek		manufaktur dari skala kecil
	dan etika;	B.	Mampu menunjukkan kinerja		rekayasa mekatronika dengan	_	hingga skala besar
			mandiri, bermutu, dan		menggunakan perangkat	В.	Mampu menguasai
D.	20		terukur;		desain untuk menghasilkan		pengetahuan operasional
	peningkatan mutu kehidupan	C.	Mampu mengkaji kasus		rancangan sistem mekatronika		lengkap dalam bidang
	bermasyarakat, berbangsa,		penerapan ilmu pengetahuan		dalam bidang otomasi dan		mekanika, elektronik,
	bernegara, dan kemajuan		dan teknologi yang		robotik yang		informatik dan kendali untuk
	peradaban berdasarkan		memperhatikan dan		mempertimbangkan faktor		menyelesaikan permasalahan
-	Pancasila;		menerapkan nilai humaniora		ekonomis, standar regulasi,		dalam bidang otomasi dan
E.	Berperan sebagai warga		sesuai dengan bidang		ergonomis pada proses	_	robotik secara mendalam
	negara yang bangga dan cinta		keahliannya dalam rangka	_	manufaktur	C.	Mampu menguasai konsep
	tanah air, memiliki		menghasilkan prototype,	C.	Mampu merancang proyek		teoritis dari prinsip sistem
	nasionalisme serta rasa		prosedur baku, desain atau		teknologi rekayasa		kendali elektronik berbasis
	tanggungjawab pada negara		karya seni, menyusun hasil		mekatronika dengan cara		mikrokontroler,
F.	dan bangsa; Menghargai keanekaragaman		kajiannya dalam bentuk kertas kerja, spesifikasi		analisa rangkaian elektronika, mekanik, informatik dan		mikroporsessor dan aplikasi sejenisnya
' '	budaya,pandangan, agama,		desain, atau esai seni, dan		kendali dalam lingkup jasa dan	D.	,
	dan kepercayaan, serta		mengunggahnya dalam laman		produk	٠.	teoritis teknik perancangan
	pendapat atau temuan orisinal		,	D.	Mampu memilih komponen		dan analisis sistem otomasi
	orang lain;	D.	Mampu menyusun hasil kajian		sensor dan aktuator dengan		industri, mulai dari
G.			tersebut diatas dalam bentuk		menerapkan teknik akuisisi		penguasaan terhadap jenis-
	kepekaan sosial serta		kertas kerja, spesifikasi		data dan metode pengolahan		jenis piranti elektronika ,

	SIKAP	Keterampilan Umum		Keterampilan Khusus		Pengetahuan
	kepedulian terhadap	desain, atau esai seni, dan		sinyal dalam bidang otomasi		sensor, actuator,
١,	masyarakat dan lingkungan; H. Taat hukum dan disiplin dalam	mengunggahnya dalam laman perguruan tinggi	E.	dan robotik Mampu memodelkan sistem		PLC/mikrokontroler, hingga software interface, untuk
'	kehidupan bermasyarakat dan	E. Mampu mengambil keputusan	۲.	elektronik, mekanik, informatik		kemudian membuat,
	bernegara.	secara tepat berdasarkan		dan kendali secara matematis		memodifikasi dan
]	. Menginternalisasi nilai, norma,	prosedur baku, spesifikasi		dalam menerapkan dan		mengaplikasikannya dalam
	dan etika akademik;	desain, persyaratan		pengembangan bidang		bidang mekatronika
-	J. Menunjukkan sikap	keselamatan dan keamanan		otomasi dan robotik	E.	Mampu menguasai konsep
	bertanggungjawab atas	kerja dalam melakukan	F.	Mampu menerapkan metode		analisa mekanis secara
	pekerjaan di bidang	supervisi dan evaluasi pada		mekaktronika dengan cara		terstruktur menggunakan
١.	keahliannya secara mandiri	pekerjaannya		konsep statik, kinematika,		teknologi mutakhir berbasis
ľ	K. Menginternalisasi semangat kemandirian, kejuangan, dan	F. Mampu memelihara dan mengembangkan jaringan		dinamik, kekuatan bahan, standar teknik dan proses		kecerdasan buatan dalam pemeliharaan model yang
	kewirausahaan;	kerja sama dan hasil kerja		manufaktur untuk menerapkan		telah dibangun sesuai dengan
	RewinduSuriduri,	sama di dalam maupun di luar		rancang bangun, karakterisasi,		permasalahan mekatronika.
		lembaganya		analisis dan identifikasi	F.	•
		G. Mampu bertanggung jawab		permasalahan pada bidang		teknik karakterisasi, analisis,
		atas pencapaian hasil kerja		otomasi dan robotik		dan interpretasi
		kelompok dan melakukan	G.	Mampu menerapkan sistem		data/informasi serta
		supervisi dan evaluasi		otomasi dengan metode sistem		identifikasi permasalahan
		terhadap penyelesaian		kendali konvesional dan		untuk mengembangkan
		pekerjaan yang ditugaskan		modern untuk meghasilkan		sistem otomasi dan robotika berdasarkan prinsip-prinsip
		kepada pekerja yang berada di bawah tanggungjawabnya		sistem yang cerdas, adaptif dan robust.		berdasarkan prinsip-prinsip rekayasa dan metodologi yang
		H. mampu melakukan proses	н	Mampu mengaplikasikan		telah diakui benar dan baik.
		evaluasi diri terhadap		perangkat dari sistem otomasi	G.	
		kelompok kerja yang berada		industry kedalam perangkat		komunikasi data berbasis
		dibawah tanggung jawabnya,		lunak (firmware) yang berbasis		internet untuk dapat
		dan mampu mengelola		IoT dengan memperhatikan		mengintegrasikan antar
		pembelajaran secara mandiri;		desain, data, konektifitas,		piranti kedalam sistem
		dan		serta keamanan perangkat		mekatronika sebagai
				untuk menghasilkan sistem		komunikasi antar piranti

SIKAP	Keterampilan Umum	Keterampilan Khusus	Pengetahuan
	K. Mampu bekerja dalam tim lintas disiplin dan lintas budaya.	hubungan di tempat kerja dengan menerapkan komunikasi yang baik secara	kebutuhan pasar dengan memanfaatkan inovasi teknologi mekatronika kepada masyarakat/mitra yang membutuhkan I. Mampu menguasai

Tabel 3.7 Keterkaitan Keterampilan Khusus dengan Pengetahuan

DOM	AIN PENGETAHUAN PADA CPL	KK1	KK2	KK3	KK4	KK5	KK6	KK7	KK8	KK9	KK10	KK11	DOMAIN KETERAMPILAN KHUSUS PADA CPL
P1	Mampu menguasai konsep matematika teknik, kinematika, elektronika, manufaktur, dan perancangan rekayasa yang diperlukan untuk analisis dan perancangan komponen, bagian, dan sistem manufaktur dari skala kecil hingga skala besar	KK1		KK3						KK9			KK1 Mampu menerapkan sains, technology,engineering and matematika (STEM) ke dalam proyek teknologi rekayasa mekatronika untuk menyelesaikan permasalahan dalam bidang otomasi dan robotik
P2	Mampu menguasai pengetahuan operasional lengkap dalam bidang mekanika, elektronik, informatik dan kendali untuk menyelesaikan permasalahan dalam bidang otomasi dan robotik secara mendalam	KK1	KK2	ккз		KK5	кк6			кк9			KK2 Mampu merancang proyek rekayasa mekatronika dengan menggunakan perangkat desain untuk menghasilkan rancangan sistem mekatronika dalam bidang otomasi dan robotik yang mempertimbangkan faktor ekonomis, standar regulasi, ergonomis pada proses manufaktur
P3	Mampu menguasai konsep teoritis dari prinsip sistem kendali elektronik berbasis mikrokontroler, mikroporsessor dan aplikasi sejenisnya	KK1	KK2	KK3		KK5	KK6			кк9			Mampu merancang proyek teknologi rekayasa mekatronika dengan cara analisa rangkaian elektronika, mekanik, informatik dan kendali dalam lingkup jasa dan produk

DOM	AIN PENGETAHUAN PADA CPL	KK1	KK2	KK3	KK4	KK5	KK6	KK7	KK8	кк9	KK10	KK11	DOMA CPL	IN KETERAMPILAN KHUSUS PADA
P4	Mampu menguasai konsep teoritis teknik perancangan dan analisis sistem otomasi industri, mulai dari penguasaan terhadap jenis-jenis piranti elektronika , sensor, actuator, PLC/mikrokontroler, hingga software interface, untuk kemudian membuat, memodifikasi dan mengaplikasikannya dalam bidang mekatronika	KK1		KK3	KK4	KK5				кк9			KK4	Mampu memilih komponen sensor dan aktuator dengan menerapkan teknik akuisisi data dan metode pengolahan sinyal dalam bidang otomasi dan robotik
P5	Mampu menguasai konsep analisa mekanis secara terstruktur menggunakan teknologi mutakhir berbasis kecerdasan buatan dalam pemeliharaan model yang telah dibangun sesuai dengan permasalahan mekatronika.	KK1		KK3	KK4	KK5	KK6			KK9	KK10		KK5	Mampu memodelkan sistem elektronik, mekanik, informatik dan kendali secara matematis dalam menerapkan dan pengembangan bidang otomasi dan robotik
P6	Mampu menguasai konsep teknik karakterisasi, analisis, dan interpretasi data/informasi serta identifikasi permasalahan untuk mengembangkan sistem otomasi dan robotika berdasarkan prinsipprinsip rekayasa dan metodologi yang telah diakui benar dan baik.	KK1		KK3	KK4	KK5	KK6			кк9		KK11	KK6	Mampu menerapkan metode mekaktronika dengan cara konsep statik, kinematika, dinamik, kekuatan bahan, standar teknik dan proses manufaktur untuk menerapkan rancang bangun, karakterisasi, analisis dan identifikasi permasalahan pada bidang otomasi dan robotik
P7	Mampu menguasai konsep komunikasi data berbasis internet untuk dapat mengintegrasikan antar	KK1		KK3		KK5	KK6			KK9			KK7	Mampu menerapkan sistem otomasi dengan metode sistem kendali konvesional

DOM	IAIN PENGETAHUAN PADA CPL	KK1	KK2	KK3	KK4	KK5	KK6	KK7	KK8	КК9	KK10	KK11	DOMAIN CPL	KETERAMPILAN KHUSUS PADA
	piranti kedalam sistem mekatronika sebagai komunikasi antar piranti												m	an modern untuk neghasilkan sistem yang erdas, adaptif dan robust.
P8	Mampu menguasai teori kebutuhan pasar dengan memanfaatkan inovasi teknologi mekatronika kepada masyarakat/mitra yang membutuhkan	KK1		KK3	KK4	KK5	KK6	KK7		кк9			po or ya m da ka m	lampu mengaplikasikan erangkat dari sistem tomasi industry kedalam erangkat lunak (firmware) ang berbasis IoT dengan nemperhatikan desain, ata, konektifitas, serta eamanan perangkat untuk nenghasilkan sistem tomasi yang bisa diakses apanpun dan dimanapun.
P9	Mampu menguasai pengetahuan operasional rencana bisnis yang berbau teknologi bidang mekatronika dan mengimplementasikan sebagai peluang yang bermanfaat bagi masyarakat.	KK1		KK3		KK5	KK6	KK7	KK8	KK9			KK9 m ei te m ya	nampu memelihara fektivitas hubungan di empat kerja dengan nenerapkan komunikasi ang baik secara lisan naupun tertulis
													sl si al ca p m ka	lampu membangun kenario model AI dari istem konvesional yang kan diubah menjadi sistem erdas yang mencakup engolahan data yang akan nasuk kedalam sistem endali untuk menghasilkan istem yang selaras dengan ebutuhan manusia.

DOI	MAIN PENGETAHUAN PADA CPL	KK1	KK2	кк3	KK4	KK5	KK6	KK7	KK8	кк9	KK10	KK11	DOMAIN KETERAMPILAN KHUSUS CPL	
													KK11	Mampu untuk bertanggung jawab kepada masyarakat dan mematuhi etika profesi dalam menyelesaikan permasalahan teknik.

3.3 Bahan Kajian Pendukung CPL

Dalam rangka meraih capaian pembelajaran yang berkualitas, penting bagi mahasiswa Program Studi Teknologi Rekayasa Mekatronika untuk memahami dan menguasai Body of Knowledge (BOK) yang meliputi empat pilar utama, yaitu elektronik, mekanik, informatika, dan kendali. BOK ini menjadi landasan komprehensif yang akan memberikan dasar kuat dalam penerapan konsep, teori, dan praktik dalam menghadapi tantangan nyata dalam bidang otomasi dan robotik. Dengan menginternalisasi BOK ini, mahasiswa akan dapat mengembangkan keterampilan lintas disiplin yang esensial untuk menghasilkan solusi inovatif dan efektif, serta berperan aktif dalam memajukan kemajuan teknologi dan industri dalam era global yang dinamis

Body of Knowledge PRODI TEKNOLOGI REKAYASA MEKATRONIKA

Elekrronik

- Teori rangkaian listrik dan elektronika dasar.
- Komponen elektronika seperti resistor, kapasitor, induktor, dan transistor.
- Sirkuit analog dan digital.
- Teknik pemrosesan sinyal.
- Mikrokontroler dan mikroprosesor.
- Teknik desain dan pemrograman rangkaian elektronika.
- Teknologi pembuatan PCB (Printed Circuit Board).

Mekanik

- Prinsip dasar mekanika dan kinematika.
- Material dan sifat mekanik.
- Desain dan analisis elemen mesin.
- Teknik manufaktur dan proses produksi.
- Mekanisme dan sistem mekanik.
- Dinamika benda padat dan fluida.
- Teknik simulasi dan analisis mekanik.

Informatik

- Pemrograman dasar dan lanjut (misalnya, C++, Python, Java).
- Struktur data dan algoritma.
- Basis data dan pengelolaannya.
- Jaringan komputer dan protokol komunikasi.
- Sistem operasi dan manajemen sumber daya.
- Pengembangan aplikasi berbasis web dan mobile.
- Kecerdasan buatan dan pembelajaran mesin.

Kendali

- Prinsip dasar sistem kendali dan teori kontrol.
- Sistem kontrol linier dan nonlinier
- Metode analisis dan desain kontrol.
- Pengendalian PID (Proportional-Integral-Derivative) dan tuning kontroler.
- Sistem kendali adaptif dan pengendalian adaptif.
- Kontrol sistem real-time dan pengendalian proses.
- Aplikasi sistem kendali pada robotika dan otomasi industri,

Gambar 3.10 Body of knowledge Prodi TRMK

Dalam upaya menyelaraskan capaian pembelajaran yang optimal, mata kuliah di Program Studi Teknologi Rekayasa Mekatronika dirancang dengan mengacu pada empat pilar utama dalam Body of Knowledge (BOK), yakni elektronik, mekanik, informatika, dan kendali. Setiap mata kuliah dibedakan berdasarkan keilmuan yang mendasari BOK ini, memastikan bahwa para mahasiswa mendapatkan pemahaman mendalam dalam setiap disiplin dan mampu mengintegrasikan pengetahuan lintas bidang untuk menyelesaikan masalah kompleks

dalam otomasi dan robotik. Dengan demikian, mata kuliah dalam program ini menjadi instrumen efektif dalam membangun fondasi pengetahuan yang kokoh dan mempersiapkan mahasiswa untuk mengejar keunggulan kompetitif dalam dunia kerja yang semakin dinamis. Tabel 3.8 Bahan Kajian Pendukung CPL

Pilar Utama	Kode BOK	Bahan Kajian
Elektronik	BOK.1	- Sirkuit Listrik dan Elektronika Analog
		- Sistem Elektronik Digital dan Mikrokontroler
		- Sistem Sensor dan Pendeteksi
		- Komunikasi Data dan Jaringan Elektronik
		- Pengolahan Sinyal dan Pengendalian
		Elektronik
Mekanik	BOK.2	- Mekanika Benda Padat dan Dinamika
		- Bahan Material dan Kekuatan Material
		- Desain Mekanik dan Konstruksi
		- Mekatronika dalam Desain Sistem Mekanis
		- Pengukuran dan Instrumentasi Mekanik
Informatik	BOK.3	- Pemrograman dan Struktur Data
		- Pengembangan Aplikasi Berbasis Web dan
		Mobile
		- Pengolahan Citra dan Pengenalan Pola
		- Basis Data dan Sistem Informasi
		- Teknik Kecerdasan Buatan dalam Sistem
		Informasi
Kendali	BOK.4	- Teori Sistem dan Analisis Kontrol
		- Pengendalian PID dan Teknik Kontrol
		Lanjutan
		- Sistem Kendali Digital dan Implementasi
		Mikrokontroler
		- Kendali Adaptif dan Kecerdasan Buatan dalam
		Sistem Kendali
		- Aplikasi Kendali dalam Robotika dan Otomasi
		Industri

Tabel 3.9 Pembentukan Mata Kuliah

Domain	Kode	Dakak Pahasan	Usulan Nama Mata	Nama Mata Kuliah	Ka	tegori	mk
CPL	BOK	Pokok Bahasan	Kuliah	Nama Mata Kulian	BS	Pr	CD
(1)	(2)	(3)	(4)	(5)		(6)	
P1	BOK.1	Konsep Dasar Teknologi, Dampak Teknologi pada Berbagai Bidang, Tren dan Inovasi Teknologi, Mengkaji Etika dan Dampak Sosial Teknologi, Teknologi dalam Konteks Pekerjaan dan Industri, Wawasan tentang Transformasi Digital dan Revolusi Industri 4.0:	Vokasional	Konsep Wawasan Teknologi Pengantar Pendidikan Vokasional	V		
	BOK.2	Sifat dan Karakteristik Bahan untuk Otomasi dan Robotik	Ilmu bahan	Ilmu material	V		
	BOK.1	Konsep Dasar Matematika untuk Teknik, Matematika dalam Pemecahan Masalah Teknik, dan Menafsirkan Hasil Matematika dalam Konteks Teknik,	Matematika Teknik	Matematika Dasar Matematika Terapan	V		
	BOK.1	eori rangkaian listrik dan elektronika dasar. Komponen elektronika seperti resistor, kapasitor, induktor, dan transistor. Menguasai jenis-jenis elektronik, karakteristik, prinsip kerja dan dalam listrik industri	Elektronik dan Listrik Elektronika Digital Pengukuran Listrik Industri	Rangkaian Listrik Sinyal dan sistem Instalasi Industri Instrumentasi Pengukuran	V	V V V	
	BOK.2	Teknik manufaktur dan proses produksi. Mekanisme dan sistem mekanik.	Kinematik dan dinamik	Kinematik, Statistik dan dinamik	٧	V	
	BOK.2	Konsep Gambar Teknik dan Standar yang Berlaku,menggambar Proyeksi dan Perspektif dari Model Mekanikal, Menggambar Detil dan Spesifikasi Teknis dan Menggambar Sketsa Konsep Awal, Menggambar Rencana Montase dan BOM (Bill of Materials)		Gambar Teknik CAD/CAM CNC		> >	

Domain	Kode	Pokok Bahasan	Usulan Nama Mata	Nama Mata Kuliah	Ka	tegori	mk
CPL	BOK	РОКОК Бапазап	Kuliah	Nama Mata Kullan	BS	Pr	CD
(1)	(2)	(3)	(4)	(5)		(6)	
P2	BOK.3	Pemrograman pada Sistem Tertanam, Perangkat Pengembangan dan Debugging Algoritma Kontrol	Informatik	Pemrograman Pemrograman Lanjut	V	V	
	BOK.4	Prinsip Dasar Sistem Kendali, Respons Sistem Kendali, sistem Kendali Sederhana	Kendali	Sistem Kendali	V	V	
	BOK.4	Konsep Dasar Otomasi Industri, Jenis-jenis Sistem Otomasi Industri, Mampu Memprogram Sistem Otomasi Industri, Sensor dan Aktuator dalam Sistem Otomasi Industri:	Otomasi	Otomasi Industri	V	V	
	BOK.4	Konsep Dasar Robotika, Pemrograman Robot dan Membangun Robot, Kinerja dan Performa Robot, Mengoptimalkan Algoritma Kontrol Robot	Robotik	Robotika	V	V	
Р3	BOK.3	sistem kendali elektronik berbasis mikrokontroler, mikroporsessor dan aplikasi sejenisnya.	Mikrokontroler	Mikrokontroler dan mikroprosessor	V	V	
P4	BOK.4	Sistem otomasi industry dan robotika meliputi sensor, actuator, PLC dan Software interface untuk perancangan sistem	Sistem terintegrasi Sensor dan Aktuator	Pengukuran sinyal dan sistem terpadu Sensor dan Aktuator	V	V V	
P5	BOK.3 BOK.4	Meknisme terstruktur dan mendalam menggunakan teknologi mukhtahir	Kecerdasan Buatan Dinamika kendaraan Embedded sistem	Kecerdasan Buatan Dinamika kendaraan dan pengendalian Sistem terbenam	V V	V	
P6	BOK.2	Konsep system mekanik pneumatik, elektronik dan software interface untuk menyelesaikan permasalahan	Konsep produksi pneumatik	Teknologi presisi dan produksi Pneumatik dan hidrolik			

Domain	Kode	Pokok Bahasan	Usulan Nama Mata	Nama Mata Kuliah	Ka	tegori	mk
CPL	BOK	POKOK Daliasali	Kuliah	Nama Mata Kunan	BS	Pr	CD
(1)	(2)	(3)	(4)	(5)		(6)	
	BOK.2 BOK.3 BOK.4	mengembangkan sistem otomasi dan robotika berdasarkan prinsip-prinsip rekayasa dan metodologi yang telah diakui benar dan baik. Dinamika kendaraan dengan system yang berpindah	Metodologi Sistem Kendali Tingkat Tinggi Robotika Tingkat Tinggi Desain Sistem Mekatronika	Metodelogi penelitian Kendali Adaptif Desain Mesin Lanjut Robotika Lanjut Sistem Bertingkat Desain SIstem Mekatronika	V		
P7	BOK.3	Mengintegrasikan Perangkat Keras dan Perangkat Lunak (Firmware) untuk Device IoT dari instalasi dan pengambilan data	IoT sistem	Komunikasi Data berbasis internet	V		
P8	BOK.1 BOK.2 BOK.3 BOK.4	menguasai teori kebutuhan pasar	Kewirausahaan Sistem proyek	Technopreuner Manejemen Proyek	V		
P9	BOK.1 BOK.2 BOK.3 BOK.4	menguasai pengetahuan operasional rencana bisnis	Etika Profesi Proyek akhir	Etika Profesi Proyek Akhir	V	V	

5.4 Struktur Mata Kuliah, Bobot SKS dan Durasi Program

3.4.1 Struktur Mata Kuliah

Setelah memahami komposisi Body of Knowledge (BOK) yang terdiri dari empat pilar keilmuan, langkah selanjutnya adalah menentukan nama-nama mata kuliah yang tidak hanya selaras dengan BOK dan ruang lingkup keilmuan, tetapi juga merefleksikan visi keilmuan yang menekankan pada otomasi dan robotik. Selain itu, penciri khas program ini akan diintegrasikan, di mana setiap mata kuliah akan diarahkan menuju capstone design yang menggabungkan elemen-elemen penting dari keempat pilar keilmuan, menghasilkan keterampilan praktis dan aplikatif dalam bidang otomasi dan robotik. Tabel

3.10 Pengelompokan Keilmuan dengan Mata Kuliah

Rangkaian Listrik Praktikum Alat Ukur dan Pengukuran Instalasi Industri Pengukuran Sinyal dan Sistem Terpadu Praktek Rangkaian Listrik Pengukuran Sinyal dan Sistem Terpadu Praktek Instalasi Industri
Instalasi Industri Pengukuran Sinyal dan Sistem Terpadu Praktek Rangkaian Listrik Pengukuran Sinyal dan Sistem Terpadu
Pengukuran Sinyal dan Sistem Terpadu Praktek Rangkaian Listrik Pengukuran Sinyal dan Sistem Terpadu
Praktek Rangkaian Listrik Pengukuran Sinyal dan Sistem Terpadu
Pengukuran Sinyal dan Sistem Terpadu
Praktek Instalasi Industri
Praktikum Pneumatik dan Hidrolik
Etching PCB
Sistem Tertanam
Praktik Pemrograman
Komunikasi data berbasis internet
Praktek Komunikasi data berbasis internet
Pemrograman Lanjut
Praktik sistem tertanam
Mikrokontroler dan mikroprosesor
Mekanika dan Material Teknik
Mekanika Kekuatan Material
Prakrek Gambar Teknik
Gambar Teknik 2
Bengkel Manufaktur
Peraktek CAD/CAM
Elemen Mesin 1
Praktik CNC
Desain 3D
Sistem Kendali
Praktik Sistem Kendali
Kecerdasan Buatan
Praktek Kecerdasan Buatan

	Sensor dan Aktuator
	Praktek Sensor dan Aktuator
	PLC
Sikap dan Keterampilan	Pendidikan Vokasional
Umum	Matematika Dasar
	Bahasa Inggris Teknik
	Konsep dan Wawasan Teknologi
	Matematika Terapan
	K3 dan Hukum Ketenagakerjaan
	Metodelogi penelitian
	Pancasila
	Kewarganegaraan
	Public Speaking
	Etika Profesi
	Bahasa Indonesia
	Agama
Otomasi	Otomasi industri
	Praktek Otomasi Industri
	Sistem Bertingkat
	Desain Mesin Lanjut
	Teknologi Produksi dan Presisi
	Workshop Mekatronika
Robotika	Robotika
	Praktek Robotika
	Kendali Adaptif
	Praktek Kendali Adaptif
	Workshop Robotika Lanjut
	Robotika Lanjut
	Workshop Sistem Benam
Penciri	Teknologi produksi dan presisi
	Manajemen proyek
	Desain Sistem Mekatronika
	Technopreunership
Capstone Design	Proposal
	Proyek Akhir
	Magang

3.4.2 Bobot SKS

Penyusunan struktur mata kuliah berdampak langsung pada pengaturan bobot SKS mata kuliah yang ditetapkan. Setiap komponen dalam struktur mengandung porsi yang mencerminkan bobot pengetahuan dan keterampilan yang akan diakuisisi oleh mahasiswa. Selanjutnya, proses menggali kedalaman mata kuliah dilakukan dengan menganalisis bobot SKS dari domain Capaian Pembelajaran Lulusan (CPL) mulai dari P1 hingga P9. Informasi tersebut menjadi landasan untuk merumuskan Bahan Kajian serta capaian pembelajaran yang disusun dengan memperhatikan tingkatan taksonomi Bloom. Dalam tiap domain CPL, angka-angka akan diakumulasikan sesuai dengan tingkatan taksonomi Bloom yang relevan, kemudian matriks Capaian Pembelajaran Mata Kuliah (CPMK) akan diterapkan pada setiap mata kuliah. Jumlah akumulasi ini selanjutnya dihitung totalnya dan dibagi dengan angka 144, yang merupakan total SKS yang dialokasikan untuk program studi sarjana terapan. Hasil perhitungan ini menentukan jumlah SKS yang akan diterapkan dalam struktur mata kuliah, memastikan keselarasan antara tujuan pembelajaran dan pengalokasian beban belajar bagi mahasiswa.

Tabel 3.11 Penentuan Bobo tsks DAN Durasi Program

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Konsep Rangkaian Listrik, Hukum-hukum Dasar	Angka: 2)	2		
P1	Rangkaian Listrik, Rangkaian Seri dan Paralel, Rangkaian Listrik dengan Komponen Pasif, Rangkaian	hukum dasar dalam rangkaian listrik, seperti hukum Ohm dan hukum Kirchhoff (Tingkatan: Penerapan - Angka: 4)	4	2,2	Rangkaian Listrik
	Listrik dengan Sumber Arus dan Tegangan		5		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat menganalisis rangkaian listrik yang mengandung komponen pasif, seperti resistor, kapasitor, dan induktor. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat menganalisis rangkaian listrik yang mengandung sumber arus dan tegangan, termasuk sumber arus dan tegangan AC dan DC. (Tingkatan: Analisis - Angka: 5)	5		
			21		
P4	Prinsip Kerja Alat Ukur, Alat Ukur Elektronik, Sinyal Gelombang, Generator Fungsi, Pengukuran pada Rangkaian Elektronik:	Mahasiswa dapat menjelaskan prinsip kerja alat ukur seperti multimeter, osiloskop, dan generator fungsi. (Tingkatan: Pengetahuan - Angka: 2)	2	1,90	
		Mahasiswa dapat menggunakan alat ukur elektronik seperti multimeter untuk mengukur tegangan, arus, dan resistansi dalam rangkaian elektronik. (Tingkatan: Penerapan - Angka: 4)	4		Praktikum Alat Ukur dan Pengukuran
		Mahasiswa dapat mengamati sinyal gelombang menggunakan osiloskop dan menjelaskan karakteristik sinyal. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menggunakan generator fungsi untuk menghasilkan sinyal gelombang dengan frekuensi dan amplitudo tertentu. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat melakukan pengukuran pada rangkaian elektronik dengan menggunakan alat ukur yang sesuai. (Tingkatan: Penerapan - Angka: 4)	4		
			18		
P5	Konsep dan Fungsi Instalasi Industri, Komponen Instalasi Listrik	Mahasiswa dapat menjelaskan konsep dasar instalasi industri dan peranannya dalam kegiatan industri. (Tingkatan: Pengetahuan - Angka: 2)	2	2	Instalasi Industri

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Industri, Prinsip Pengamanan dan Perlindungan Instalasi Industri, Desain Instalasi Listrik Industri, Sistem Komunikasi Industri, Prinsip Keselamatan dan Kesehatan Kerja dalam Instalasi Industri:	Mahasiswa dapat mengidentifikasi dan menyebutkan komponen utama dalam instalasi listrik industri seperti transformator, panel distribusi, dan motor listrik. (Tingkatan: Pengetahuan - Angka: 2)	2		
		Mahasiswa dapat menjelaskan prinsip pengamanan dan penggunaan perangkat pengaman seperti MCB dan MCCB dalam instalasi industri untuk melindungi dari gangguan dan kerusakan. (Tingkatan: Pemahaman - Angka: 3)	3		
		Mahasiswa dapat merancang dan menerapkan sistem distribusi daya serta pemilihan komponen instalasi listrik seperti transformator dan panel distribusi. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat mengintegrasikan jaringan dan sistem komunikasi data untuk pemantauan dan pengendalian proses di instalasi industri. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat memahami prinsip keselamatan dan kesehatan kerja dalam instalasi industri serta menerapkan langkah-langkah pencegahan risiko kecelakaan. (Tingkatan: Pemahaman - Angka: 3)	3		
			18		
P4	Konsep Sinyal dan Sistem pada Elektronika Digital: Komponen Elektronika Digital dan Pengukuran Sinyalnya: Prinsip Pengolahan Sinyal dalam Elektronika Digital: Pengolahan Sinyal dalam Elektronika Digital: Pengukuran Sinyal pada	Mahasiswa dapat menjelaskan konsep dasar tentang sinyal dan sistem pada elektronika digital serta penerapannya dalam berbagai rangkaian digital. (Tingkatan: Pengetahuan - Angka: 2)	2	3	Pengukuran Sinyal dan Sistem Terpadu
		Mahasiswa dapat mengidentifikasi berbagai komponen elektronika digital dan melakukan pengukuran sinyal digital pada rangkaian. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menjelaskan prinsip dasar pengolahan sinyal dalam elektronika digital, termasuk teknik pemrosesan sinyal dan analisis spektral. (Tingkatan: Pemahaman - Angka: 3)	3		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Rangkaian Elektronika Digital: Teknik Pengukuran pada Elektronika Digital: Konsep Sistem Terpadu:	Mahasiswa dapat menerapkan teknik pengolahan sinyal digital, seperti filtering dan analisis spektral, dalam pengolahan sinyal elektronika digital secara praktis. (Tingkatan: Penerapan - Angka: 4)	4		
	Sistem Terpadu dalam Pengukuran dan Kontrol: Sistem Terpadu:	Mahasiswa dapat menganalisis data hasil pengukuran sinyal pada rangkaian elektronika digital dan mengambil kesimpulan dari hasil analisis tersebut. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat menerapkan teknik pengukuran pada berbagai rangkaian elektronika digital untuk mendapatkan data yang akurat dan reliabel. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menjelaskan konsep dasar tentang sistem terpadu dan integrasi antara rangkaian elektronika digital dengan sistem lainnya. (Tingkatan: Pengetahuan - Angka: 2)	2		
		Mahasiswa dapat menerapkan sistem terpadu untuk pengukuran dan kontrol berbagai variabel dalam suatu sistem secara otomatis. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat merancang sistem terpadu dengan memilih dan mengintegrasikan komponen elektronika digital dan sistem lainnya secara efektif. (Tingkatan: Penerapan - Angka: 4)	4		
			32		
P1	Konsep Rangkaian Listrik: Mengukur Tegangan, Arus,	Mahasiswa dapat menjelaskan konsep dasar tentang rangkaian listrik dan komponen-komponennya. (Tingkatan: Pengetahuan - Angka: 2)	2	2	Praktek Rangkaian
P1 dan Resistansi: Rangkaian Seri da Paralel:	Mahasiswa dapat menggunakan multimeter untuk mengukur tegangan, arus, dan resistansi dalam rangkaian listrik. (Tingkatan: Penerapan - Angka: 4)	4		Listrik	

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Rangkaian Resistor, Kapasitor, dan Induktor: Rangkaian Listrik dalam	Mahasiswa dapat menganalisis dan menerapkan rangkaian seri dan paralel serta mengukur tegangan dan arus dalam rangkaian tersebut. (Tingkatan: Analisis - Angka: 5)	5		
	Aplikasi Sehari-hari:	Mahasiswa dapat menganalisis dan menerapkan rangkaian dengan resistor, kapasitor, dan induktor serta mengukur dan menghitung nilai-nilai komponen dalam rangkaian tersebut. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat menerapkan konsep rangkaian listrik dalam perangkat elektronik dan aplikasi sehari-hari serta mengamati dan menganalisis rangkaian dalam perangkat tersebut. (Tingkatan: Penerapan - Angka: 4)	4		
			20		
	Sinyal Digital: Sistem Terpadu: Data Pengukuran dan Mengambil Kesimpulan: Simulasi Sistem Terpadu: Menyusun Laporan Praktikum:	Mahasiswa dapat melakukan pengukuran dan analisis sinyal digital menggunakan alat ukur elektronika digital untuk mengamati karakteristik sinyal, waktu, dan frekuensi. (Tingkatan: Penerapan - Angka: 4)	4	2	Praktek Pengukuran Sinyal
P4		Mahasiswa dapat merancang dan menerapkan sistem terpadu dengan mengintegrasikan rangkaian elektronika digital dan sistem lainnya serta melakukan pengukuran dan pengendalian variabel dalam sistem secara otomatis. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menganalisis data hasil pengukuran dan pengendalian dari sistem terpadu, serta mengambil kesimpulan mengenai kinerja sistem berdasarkan data yang diperoleh. (Tingkatan: Analisis - Angka: 5)	5		dan Sistem Terpadu
		Mahasiswa dapat melakukan simulasi sistem terpadu menggunakan perangkat lunak simulasi elektronika digital untuk menguji kinerja sistem sebelum implementasi. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat menyusun laporan praktikum yang jelas dan sistematis berisi hasil pengukuran, analisis, dan kesimpulan dari kegiatan praktikum pengukuran sinyal dan sistem terpadu. (Tingkatan: Penerapan - Angka: 4)	4		
			21		
		Mahasiswa dapat menggunakan alat ukur seperti multimeter, tang ampere, dan klem ampere untuk melakukan pengukuran pada instalasi listrik industri. (Tingkatan: Penerapan - Angka: 4)	4		
	Alat Ukur pada Instalasi Listrik Industri: Teknik Instalasi Listrik Industri: Teknik Instalasi Listrik Industri: Teknik Instalasi Listrik Industri: Parameter Listrik: Pengamanan dan man dan perangkat kontrol dalam dengan benar dan aman. (Tingkatan: Mahasiswa dapat melakukan pengukur listrik seperti tegangan, arus, dan dengan benar dan aman.	Mahasiswa dapat menerapkan teknik instalasi kabel, perangkat proteksi, dan perangkat kontrol dalam rangkaian listrik industri dengan benar dan aman. (Tingkatan: Penerapan - Angka: 4)	4		Praktek Instalasi
P5		Mahasiswa dapat menerapkan teknik instalasi kabel, perangkat proteksi, dan perangkat kontrol dalam rangkaian listrik industri dengan benar dan aman. (Tingkatan: Penerapan - Angka: 4)	4	2	
		Mahasiswa dapat melakukan pengukuran dan analisis parameter listrik seperti tegangan, arus, dan daya pada instalasi listrik industri untuk mengamati karakteristik dan kinerja sistem. (Tingkatan: Penerapan - Angka: 4)	4		Industri
		Mahasiswa dapat mengimplementasikan perangkat pengaman dan perlindungan dalam sistem otomasi industri untuk memastikan keamanan dan keandalan sistem. (Tingkatan: Penerapan - Angka: 4)			
			20		
P1	Desain PCB untuk Etching: Proses Etching PCB:	Mahasiswa dapat mempersiapkan desain PCB yang akan dietching dengan menggunakan perangkat lunak desain PCB seperti Eagle atau Altium. (Tingkatan: Penerapan - Angka: 4)Menrapkan Proses Transfer Gambar:	4	1	Etching PCB

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat melakukan proses etching PCB dengan aman dan tepat menggunakan larutan etching yang sesuai. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menerapkan proses transfer gambar dari film etching ke papan sirkuit cetak dengan menggunakan metode fotoresist atau transfer panas. (Tingkatan: Penerapan - Angka: 4)	4		
			12		
		Mahasiswa dapat menjelaskan konsep dasar sistem tertanam, termasuk karakteristik, kelebihan, dan batasan dari sistem tertanam. (Tingkatan: Pemahaman - Angka: 3)	3		
	Konsep Dasar Sistem	Mahasiswa dapat mengidentifikasi komponen-komponen utama dan arsitektur dari sistem tertanam, termasuk prosesor, perangkat input/output, dan sistem operasi. (Tingkatan: Penerapan - Angka: 4)	4		
P6	Komponen dan Arsitektur Sistem Tertanam: Prinsip Pemrograman	Komponen dan Arsitektur istem Tertanam: Prinsip Pemrograman Mahasiswa dapat menjelaskan prinsip dasar pemrograman sistem tertanam, termasuk teknik pengembangan perangkat lunak, integrasi perangkat keras, dan pengelolaan sumber daya terbatas (Tingkatan) Pemahaman - Angka: 3)	3	2	Ciata ya Tanta ya ya
ru	Pemrograman Sistem Tertanam: Kinerja Sistem Tertanam: dan Algoritma Kontrol pada Sistem Tertanam: Mahasiswa dapat menerapkan pemrograman pada sistem tertanam menggunakan bahasa pemrograman yang sesuai dan memprogram perangkat keras untuk menjalankan tugas tertentu. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat menganalisis kinerja sistem tertanam, termasuk respons waktu, throughput, dan konsumsi daya untuk mengevaluasi efisiensi sistem. (Tingkatan: Analisis - Angka: 5) Mahasiswa dapat merancang dan memahami algoritma kontrol	4	2	Sistem Tertanam	
		Mahasiswa dapat menganalisis kinerja sistem tertanam, termasuk respons waktu, throughput, dan konsumsi daya untuk mengevaluasi efisiensi sistem. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat merancang dan memahami algoritma kontrol pada sistem tertanam untuk mengatur perilaku sistem	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		berdasarkan input dan kondisi yang berubah. (Tingkatan: Penerapan - Angka: 4)			
			23		
		Mahasiswa dapat menerapkan pemrograman pada sistem tertanam menggunakan bahasa pemrograman yang sesuai, termasuk memprogram perangkat keras dan mengintegrasikannya dengan perangkat lunak. (Tingkatan: Penerapan - Angka: 4)	4		
	Pemrograman pada Sistem Tertanam: Perangkat Pengembangan dan Debugging: dan Algoritma Kontrol: Keamanan dan Kehandalan Program: Masalah dan Troubleshooting: Mahasiswa dapat menggunakan perangkat pengembangan dan debugging seperti IDE (Integrated Development Environment) dan emulator untuk mengembangkan dan menguji program pada sistem tertanam. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat memahami algoritma kontrol pada sistem tertanam dan mengimplementasikannya dalam kode program untuk mengatur perilaku sistem berdasarkan input dan kondisi yang berubah. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat mengimplementasikan langkah-langkah keamanan dan kehandalan dalam program untuk melindungi sistem tertanam dari potensi ancaman dan menghadapi kemungkinan kegagalan. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat mengidentifikasi dan mengatasi masalah yang muncul dalam pemrograman sistem tertanam, termasuk melakukan troubleshooting dan debugging untuk mencari sumber kesalahan. (Tingkatan: Penerapan - Angka: 4)	debugging seperti IDE (Integrated Development Environment) dan emulator untuk mengembangkan dan menguji program pada	4		
P1		tertanam dan mengimplementasikannya dalam kode program untuk mengatur perilaku sistem berdasarkan input dan kondisi	4	2	Praktik Pemrograman
		4			
		muncul dalam pemrograman sistem tertanam, termasuk melakukan troubleshooting dan debugging untuk mencari	4		
			20		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat menjelaskan berbagai protokol dan teknologi yang digunakan dalam komunikasi data berbasis internet, termasuk TCP/IP, HTTP, DNS, dan teknologi jaringan nirkabel. (Tingkatan: Pemahaman - Angka: 3)	3		
	Protokol dan Teknologi Komunikasi Internet:	Mahasiswa dapat mengidentifikasi arsitektur dan komponen jaringan internet, termasuk server, router, switch, dan perangkat jaringan lainnya. (Tingkatan: Penerapan - Angka: 4)	4		
P9	Arsitektur dan Komponen Jaringan Internet: Konfigurasi dan Pengaturan Jaringan: Kinerja Jaringan Internet: Uji Coba dan Pengujian Aplikasi Web:	Mahasiswa dapat menerapkan konfigurasi dan pengaturan pada jaringan internet, termasuk pengaturan alamat IP, subnetting, dan konfigurasi perangkat jaringan. (Tingkatan: Penerapan - Angka: 4)	4	2	Komunikasi data berbasis internet
		Mahasiswa dapat menganalisis kinerja jaringan internet, termasuk latensi, throughput, dan packet loss untuk mengidentifikasi masalah dan meningkatkan performa jaringan. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat melakukan uji coba dan pengujian terhadap aplikasi web untuk memastikan kinerja dan fungsionalitasnya sesuai dengan kebutuhan pengguna. (Tingkatan: Penerapan - Angka: 4)	4		
			20		
	Konfigurasi Jaringan Internet: Keamanan Jaringan Internet:	Mahasiswa dapat mengidentifikasi konfigurasi jaringan internet, termasuk pengaturan alamat IP, subnetting, dan konfigurasi perangkat jaringan seperti router dan switch. (Tingkatan: pemahaman - Angka: 4)	3	2	Praktek IoT
P9	Protokol dan Teknologi Komunikasi Internet: Perangkat Pengembangan dan Emulator: dan Aplikasi Web:	Mahasiswa dapat mengimplementasikan langkah-langkah keamanan dalam jaringan internet, termasuk konfigurasi firewall, VPN (Virtual Private Network), dan enkripsi data untuk melindungi jaringan dari ancaman keamanan. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Uji Coba dan Pengujian Aplikasi Web:	Mahasiswa dapat menerapkan protokol dan teknologi komunikasi internet, seperti TCP/IP, HTTP, dan DNS dalam lingkungan praktikum untuk melakukan komunikasi data. (Tingkatan: Penerapan - Angka: 4)	4		
	Mahasiswa dapat menggunakan perangkat pengembangan dan emulator untuk mengembangkan dan menguji program dalam lingkungan komunikasi data berbasis internet. (Tingkatan: Penerapan - Angka: 4)	4			
		Mahasiswa dapat merancang dan mengimplementasikan aplikasi web dalam praktikum menggunakan bahasa pemrograman dan teknologi web seperti HTML, CSS, JavaScript, dan PHP. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat melakukan uji coba dan pengujian terhadap aplikasi web yang telah dikembangkan dalam lingkungan praktikum untuk memastikan fungsionalitas dan performanya sesuai dengan kebutuhan. (Tingkatan: Penerapan - Angka: 4)	4		
			23		
	Konsep dan Teknik Pemrograman Lanjut:	Mahasiswa dapat menerapkan konsep dan teknik pemrograman lanjut, termasuk polimorfisme, pewarisan, enkapsulasi, dan abstraksi dalam pengembangan perangkat lunak. (Tingkatan: Penerapan - Angka: 4)	4		
P1	Framework dan Library: Desain Arsitektur Perangkat Lunak: Uji Coba dan Pengujian Perangkat Lunak: Keamanan dan Perlindungan Data:	Mahasiswa dapat menggunakan framework dan library pemrograman lanjut seperti Spring, React, atau Django untuk mempercepat pengembangan aplikasi dan meningkatkan kualitas perangkat lunak. (Tingkatan: Penerapan - Angka: 4)	4	2	Pemrograman Lanjut
		Mahasiswa dapat mengimplementasikan desain arsitektur perangkat lunak yang baik, seperti desain berorientasi objek atau desain berbasis mikroservis dalam proyek pemrograman lanjut. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat melakukan uji coba dan pengujian terhadap perangkat lunak yang telah dikembangkan dalam lingkungan praktikum untuk memastikan fungsionalitas dan kualitas perangkat lunak. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menerapkan langkah-langkah keamanan dan perlindungan data dalam proyek pemrograman lanjut untuk melindungi aplikasi dari potensi ancaman keamanan dan kebocoran data. (Tingkatan: Penerapan - Angka: 4)	4		
			20		
	Pemrograman Sistem Tertanam: Perangkat Pengembangan dan Debugging: Algoritma Kontrol pada Sistem Tertanam: Uji Coba dan Pengujian Sistem Tertanam: Merancng dan Aplikasi Tertanam: Komunikasi Jaringan dalam Sistem Tertanam:	Mahasiswa dapat mengidentifikasi pemrograman pada sistem tertanam menggunakan bahasa pemrograman yang sesuai, termasuk memprogram perangkat keras dan mengintegrasikannya dengan perangkat lunak. (Tingkatan: Penerapan - Angka: 4)	3		
		Mahasiswa dapat menggunakan perangkat pengembangan dan debugging seperti IDE (Integrated Development Environment) dan emulator untuk mengembangkan dan menguji program pada sistem tertanam. (Tingkatan: Penerapan - Angka: 4)	4		
P6		Mahasiswa dapat mengimplementasikan algoritma kontrol pada sistem tertanam untuk mengatur perilaku sistem berdasarkan input dan kondisi yang berubah. (Tingkatan: Penerapan - Angka: 4)	4	2	Praktik sistem tertanam
		Mahasiswa dapat melakukan uji coba dan pengujian terhadap sistem tertanam untuk memastikan kinerja dan fungsionalitasnya sesuai dengan kebutuhan. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat merancang dan mengimplementasikan aplikasi tertanam dalam praktikum, menggunakan sensor dan aktuator	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		untuk berinteraksi dengan lingkungan. (Tingkatan: Penerapan - Angka: 4)			
		Mahasiswa dapat menggunakan teknologi komunikasi jaringan dalam sistem tertanam untuk berkomunikasi dengan perangkat lain dan mengirimkan data. (Tingkatan: Penerapan - Angka: 4)	4		
			23		
	Dorangkat Mikrokontrolor	Mahasiswa dapat mengidentifikasi perbedaan antara mikrokontroler dan mikroprosesor, serta memahami struktur dan komponen utama yang terdapat pada keduanya. (Tingkatan: Pemahaman - Angka: 3)	3		
P3	Pemrograman Mikrokontroler: Perangkat Pengembangan Mikrokontroler:	Mahasiswa dapat mengimplementasikan pemrograman pada mikrokontroler menggunakan bahasa pemrograman yang sesuai, serta mengatur interaksi dengan perangkat keras dan periferal eksternal. (Tingkatan: Penerapan - Angka: 4)	4	1	Mikrokontroler dan mikroprosesor
		Mahasiswa dapat menggunakan perangkat pengembangan dan perangkat lunak seperti IDE (Integrated Development Environment) untuk mengembangkan dan menguji program pada mikrokontroler. (Tingkatan: Penerapan - Angka: 4)	4		
			11		
	Prinsip dasar Pneumatik dan Hidrolik: Komponen Pneumatik dan	Mahasiswa dapat mengidentifikasi prinsip dasar pneumatik dan hidrolik, serta memahami perbedaan antara sistem pneumatik dan hidrolik. (Tingkatan: Pemahaman - Angka: 3)	3	2	Praktikum Pneumatik dan Hidrolik
P7	Hidrolik: dan Merakit Sistem Pneumatik dan Hidrolik:	Mahasiswa dapat menggunakan dan mengenal komponen- komponen pneumatik dan hidrolik seperti silinder, katup, pompa, dan pengontrol tekanan dalam lingkungan praktikum. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Sistem Pneumatik dan Hidrolik: Perawatan dan Pemeliharaan Sistem	Mahasiswa dapat merancang dan merakit sistem pneumatik dan hidrolik dengan mempertimbangkan prinsip kerja dan spesifikasi komponen untuk mencapai tujuan tertentu. (Tingkatan: Penerapan - Angka: 4)	4		
	Pneumatik dan Hidrolik:	Mahasiswa dapat mengoperasikan sistem pneumatik dan hidrolik yang telah dirancang dan dirakit dalam lingkungan praktikum dengan benar dan aman. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat melakukan perawatan dan pemeliharaan rutin pada sistem pneumatik dan hidrolik untuk memastikan kinerja dan umur panjang sistem. (Tingkatan: Penerapan - Angka: 4)	4		
			19		
	Sifat dan Karakteristik Bahan untuk Otomasi dan Robotik: Performa Bahan dalam Aplikasi Otomasi dan Robotik: Memilih dan Mendesain Bahan untuk Aplikasi Otomasi dan Robotik: Teknologi dan Metode Manufaktur Bahan: Prinsip Keberlanjutan dalam Pemilihan Bahan:	Mahasiswa dapat memahami sifat dan karakteristik berbagai jenis bahan yang digunakan dalam aplikasi otomasi dan robotik, termasuk logam, plastik, komposit, dan bahan keramik. (Tingkatan: Pemahaman - Angka: 3)	3		
		Mahasiswa dapat menganalisis performa bahan dalam aplikasi otomasi dan robotik, seperti kekuatan, kekakuan, tahan aus, dan daya tahan terhadap lingkungan kerja. (Tingkatan: Analisis - Angka: 4)	4		Mekanika dan
P1		Mahasiswa dapat memilih dan mendesain bahan yang tepat untuk aplikasi otomasi dan robotik berdasarkan persyaratan teknis dan lingkungan kerja yang diperlukan. (Tingkatan: Evaluasi - Angka: 5)	5	2	Material Teknik
		Mahasiswa dapat mengenal teknologi dan metode manufaktur yang digunakan untuk memproduksi komponen otomasi dan robotik dari berbagai bahan, termasuk teknik pemrosesan logam, plastik, dan komposit. (Tingkatan: Pemahaman - Angka: 3)	3		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat menerapkan prinsip keberlanjutan dalam pemilihan bahan untuk otomasi dan robotik, termasuk mempertimbangkan dampak lingkungan dan siklus hidup produk. (Tingkatan: Penerapan - Angka: 4)	4		
			19		
		Mahasiswa dapat mengenal konsep dasar gambar teknik, simbologi, dan standar yang berlaku dalam perancangan mekanikal tahap awal. (Tingkatan: Pemahaman - Angka: 3)	3		
	Konsep Gambar Teknik dan Standar yang Berlaku: enggambar Proyeksi dan Perspektif dari Model Mekanikal: Menggambar Detil dan Spesifikasi Teknis: dan Menggambar Sketsa	Mahasiswa dapat menggambar proyeksi ortogonal dan perspektif dari model mekanikal dalam gambar teknik, termasuk pemilihan tipe proyeksi yang tepat. (Tingkatan: Penerapan - Angka: 4)	4		Prakrek Gambar Teknik
P1		Mahasiswa dapat menggambar detil dan spesifikasi teknis komponen atau produk dalam gambar teknik, termasuk toleransi, dimensi, dan material yang digunakan. (Tingkatan: Penerapan - Angka: 4)	4	2	
	Konsep Awal: Menggambar Rencana Montase dan BOM (Bill of Materials):	Mahasiswa dapat merancang dan menggambar sketsa konsep awal perancangan mekanikal dalam gambar teknik, termasuk eksplorasi berbagai alternatif desain. (Tingkatan: Penerapan - Angka: 4)	4		
	Tides idio)	Mahasiswa dapat menggambar rencana montase dari komponen mekanikal dan menyusun BOM yang memuat daftar material yang dibutuhkan. (Tingkatan: Penerapan - Angka: 4)	4		
			19		
P1	Alat dan Peralatan di Bengkel Manufaktur Kerja Bangku:	Mahasiswa dapat memahami berbagai jenis alat dan peralatan yang digunakan di bengkel manufaktur kerja bangku, termasuk mesin frais, mesin bubut, mesin gerinda, dan lain-lain. (Tingkatan: Pemahaman - Angka: 3)	3	2	Bengkel Manufaktur

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Teknik Dasar dalam Proses Manufaktur: Alat dan Peralatan dengan Benar dan Aman:	Mahasiswa dapat mengenal teknik dasar dalam proses manufaktur seperti pemesinan, pengelasan, pemotongan logam, dan pemotongan material lainnya. (Tingkatan: Pemahaman - Angka: 3)	3		
	dan Menghasilkan Produk Sederhana dengan Teknik Bengkel: Kualitas Produk Hasil	Mahasiswa dapat menggunakan alat dan peralatan di bengkel manufaktur kerja bangku dengan benar dan aman, serta mengikuti prosedur keselamatan kerja yang berlaku. (Tingkatan: Penerapan - Angka: 4)	4		
	Manufaktur:	Mahasiswa dapat merancang dan menghasilkan produk sederhana menggunakan teknik dan alat di bengkel manufaktur kerja bangku, termasuk memahami toleransi dan dimensi yang tepat. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menganalisis kualitas produk yang dihasilkan dari proses manufaktur di bengkel kerja bangku, termasuk memeriksa dimensi dan kehalusan permukaan. (Tingkatan: Analisis - Angka: 5)	5		
			19		
D1	Konsep Dasar CAD/CAM dan Fungsi Aplikasi: Aplikasi CAD/CAM dengan Mahir: Menggambar dan Mendokumentasikan Rencana Teknik: Teknik Manufaktur dalam Desain:	Mahasiswa dapat memahami konsep dasar Computer-Aided Design (CAD) dan Computer-Aided Manufacturing (CAM), serta memahami fungsi dan kegunaan aplikasi CAD/CAM yang digunakan dalam perancangan dan pembuatan produk. (Tingkatan: Pemahaman - Angka: 3)	3	2	Poraktok CAD/CAM
P1		Mahasiswa dapat mengoperasikan aplikasi CAD/CAM secara mahir, termasuk menguasai berbagai perintah dan fungsi untuk menggambar, memodifikasi, dan menyusun gambar teknik serta menghasilkan program manufaktur berdasarkan model desain. (Tingkatan: Penerapan - Angka: 4)	4	2	Peraktek CAD/CAM

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Menghasilkan Program Manufaktur CAM:	Mahasiswa dapat menggambar dan mendokumentasikan rencana teknik dalam bentuk gambar teknik menggunakan aplikasi CAD/CAM, termasuk proyeksi, perspektif, dan detil teknis. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menerapkan teknik manufaktur dalam desain menggunakan aplikasi CAD/CAM, termasuk mempertimbangkan kemampuan proses manufaktur dan bahan yang digunakan. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menghasilkan program manufaktur untuk mesin CNC (Computer Numerical Control) berdasarkan model desain menggunakan aplikasi CAM dalam proses produksi. (Tingkatan: Penerapan - Angka: 4)	4		
			19		
	Konsep Dasar Kinematika: Menghitung dan Kecepatan dan Percepatan: Statistik Mekanik: Metode Statistik dalam Analisis Sistem Mekanik:	Mahasiswa dapat memahami konsep dasar kinematika, termasuk gerak translasi, gerak rotasi, kecepatan, dan percepatan, serta mengaplikasikannya pada berbagai sistem mekanik. (Tingkatan: Pemahaman - Angka: 3)	3		Mekanika dan
D1		Mahasiswa dapat menghitung dan menganalisis kecepatan dan percepatan pada berbagai titik dalam suatu sistem mekanik menggunakan metode kinematika yang tepat. (Tingkatan: Analisis - Angka: 5)	5	2	
P1	Konsep Dasar Dinamika: Gaya dan Momen pada Sistem Mekanik: Menghitung dan Energi	Mahasiswa dapat memahami konsep dasar statistik mekanik, termasuk distribusi probabilitas, variabel acak, dan analisis statistik dalam sistem mekanik. (Tingkatan: Pemahaman - Angka: 3)	3	3	kekuatan material
	dalam Sistem Mekanik:	Mahasiswa dapat menggunakan metode statistik untuk menganalisis perilaku sistem mekanik, termasuk distribusi probabilitas, analisis regresi, dan keandalan sistem. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat memahami konsep dasar dinamika, termasuk hukum Newton, momen inersia, dan gaya-gaya yang bekerja pada sistem mekanik. (Tingkatan: Pemahaman - Angka: 3)	3		
		Mahasiswa dapat menganalisis gaya dan momen yang bekerja pada sistem mekanik, termasuk menghitung momen inersia, momen torsi, dan perpindahan gaya. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat menghitung dan menganalisis energi kinetik dan potensial dalam sistem mekanik, serta memahami konsep konservasi energi. (Tingkatan: Analisis - Angka: 5)	5		
			28		
	Konsep Kinematika dalam Praktikum: Statistik untuk Analisis Data Praktikum: Konsep Dinamik dalam Praktikum: Energi dalam Praktikum: Simulasi dan Perhitungan dengan Benar: menganalisis gerak translasi of tertentu menggunakan alat (Tingkatan: Penerapan - Angk Mahasiswa dapat menggunakan alat (Tingkatan: Penerapan - Angk Mahasiswa dapat menerapkar Newton dan kalkulasi momen dan momen yang bekerja praktikum. (Tingkatan: Penera Mahasiswa dapat menganalisis objek-objek yang diteliti dal	Mahasiswa dapat menerapkan konsep kinematika untuk menganalisis gerak translasi dan gerak rotasi pada objek-objek tertentu menggunakan alat dan peralatan yang tersedia. (Tingkatan: Penerapan - Angka: 4)	4		Praktik kinematik, statistik dan dinamik
		Mahasiswa dapat menggunakan metode statistik untuk menganalisis data hasil praktikum, termasuk menghitung rata- rata, standar deviasi, dan menggambar grafik yang relevan. (Tingkatan: Penerapan - Angka: 4)	4		
P1		Mahasiswa dapat menerapkan konsep dinamik, seperti hukum Newton dan kalkulasi momen inersia, untuk menganalisis gaya dan momen yang bekerja pada objek-objek tertentu dalam praktikum. (Tingkatan: Penerapan - Angka: 4)	4	2	
		Mahasiswa dapat menganalisis energi kinetik dan potensial pada objek-objek yang diteliti dalam praktikum, serta memahami konsep konservasi energi dalam situasi tertentu. (Tingkatan: Analisis - Angka: 5)	5		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat melakukan simulasi dan perhitungan dengan benar menggunakan perangkat lunak dan alat yang tersedia dalam praktikum kinematik, statistik, dan dinamik. (Tingkatan: Penerapan - Angka: 4)	4		
			21		
		Mahasiswa dapat memahami prinsip kerja dan fungsi mesin CNC, termasuk komponen-komponen utama, sistem kendali, dan perangkat lunak yang digunakan dalam proses manufaktur CNC. (Tingkatan: Pemahaman - Angka: 3)	3		
	Prinsip Kerja dan Fungsi Mesin CNC: Mesin CNC dengan Cermat dan Aman: Perangkat Lunak CAM untuk Membuat Program CNC: Mesin CNC untuk Pemesinan dan Pembentukan: Mengukur dan Memverifikasi Kualitas Produk yang Dibuat: Pengaturan Alat Pemesinan dalam Mesin CNC:	Mahasiswa dapat mengoperasikan mesin CNC dengan cermat dan aman, termasuk pengaturan parameter pemrosesan dan langkah-langkah keselamatan kerja dalam penggunaan mesin CNC. (Tingkatan: Penerapan - Angka: 4)	4		
P1		Mahasiswa dapat menggunakan perangkat lunak CAM (Computer-Aided Manufacturing) untuk membuat program CNC yang sesuai dengan desain produk dan spesifikasi proses manufaktur. (Tingkatan: Penerapan - Angka: 4)	4	2	Praktik CNC
		Mahasiswa dapat mengoperasikan mesin CNC untuk melakukan proses pemesinan, pembentukan, atau pemotongan material sesuai dengan program yang telah dibuat. (Tingkatan: Penerapan - Angka: 4)	4	_	
		Mahasiswa dapat mengukur dan memverifikasi kualitas produk yang dihasilkan dari proses manufaktur CNC menggunakan alat pengukuran dan perangkat verifikasi yang sesuai. (Tingkatan: Evaluasi - Angka: 5)	5		
		Mahasiswa dapat memahami pengaturan alat pemesinan dalam mesin CNC, termasuk memilih dan mengganti alat pemesinan dengan tepat sesuai dengan jenis dan ukuran produk yang akan diproses. (Tingkatan: Pemahaman - Angka: 3)	3		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
			23		
	Konsep Dasar Desain 3D:	Mahasiswa dapat mengenal konsep dasar dalam desain 3D, termasuk penggunaan software desain, pemodelan objek 3D, dan manipulasi geometri. (Tingkatan: Pemahaman - Angka: 3)	3		
P1	Perangkat Lunak Desain 3D dengan Mahir: Mendesain Objek 3D dengan Presisi dan	Mahasiswa dapat menggunakan perangkat lunak desain 3D, seperti Autodesk Fusion 360 atau SolidWorks, dengan mahir untuk membuat model 3D yang kompleks dan presisi. (Tingkatan: Penerapan - Angka: 4)	4	1	Desain 3D
	Kreativitas: Mal kre ses	Mahasiswa dapat mendesain objek 3D dengan presisi dan kreativitas, termasuk mengatur dimensi dan fitur desain yang sesuai dengan tujuan fungsional dan estetika. (Tingkatan: Penerapan - Angka: 4)	4		
			11		
	Prinsip Dasar Sistem Kendali:	Mahasiswa dapat memahami prinsip dasar sistem kendali, termasuk jenis-jenis sistem kendali, struktur, dan konsep dasar dalam pengendalian sistem. (Tingkatan: Pemahaman - Angka: 3)	3		
	Respons Sistem Kendali: Sistem Kendali Sederhana:	Mahasiswa dapat menganalisis respons sistem kendali terhadap input, termasuk waktu tanggap, stabilitas, kecepatan respon, dan presisi. (Tingkatan: Analisis - Angka: 5)	5		Sistem Kendali
P2	Perangkat Lunak untuk Simulasi Sistem Kendali: Mengoptimalkan Kinerj Masalah dan Solusi dalam Sistem Kendali:	Mahasiswa dapat merancang sistem kendali sederhana dengan menggunakan metode pengendalian yang sesuai, seperti P, PI, atau PID, untuk mencapai tujuan tertentu. (Tingkatan: Penerapan - Angka: 4)	4	3	
		Mahasiswa dapat menggunakan perangkat lunak simulasi untuk memodelkan dan menganalisis sistem kendali serta mengevaluasi kinerjanya. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat mengoptimalkan kinerja sistem kendali dengan melakukan tuning parameter kontroler dan memperbaiki respons sistem. (Tingkatan: Evaluasi - Angka: 6)	6		
		Mahasiswa dapat mengidentifikasi masalah yang terjadi dalam sistem kendali dan merancang solusi untuk memperbaiki performa sistem. (Tingkatan: Analisis - Angka: 5)	5		
			27		
	Alat dan Peralatan Praktikum Sistem Kendali: Sistem Kendali dengan Benar: Respons Sistem Kendali dalam Praktikum: dan Implementasi Kontroler Sederhana: Perangkat Lunak untuk Simulasi Sistem Kendali:	Mahasiswa dapat mengenal alat dan peralatan yang digunakan dalam praktikum sistem kendali, seperti sistem kontroler, sensor, aktuator, dan perangkat lunak simulasi. (Tingkatan: Pemahaman - Angka: 3)	3		
		Mahasiswa dapat mengoperasikan sistem kendali dengan benar, termasuk melakukan pengaturan parameter dan menghubungkan komponen untuk menjalankan sistem secara tepat. (Tingkatan: Penerapan - Angka: 4)	4		
P2		Mahasiswa dapat menganalisis respons sistem kendali dalam praktikum, seperti waktu tanggap, stabilitas, dan presisi kinerja sistem kendali berdasarkan data pengukuran. (Tingkatan: Analisis - Angka: 5)	5	2	Praktik Sistem Kendali
		Mahasiswa dapat merancang dan melakukan implementasi kontroler sederhana, seperti P, PI, atau PID, pada sistem kendali di dalam praktikum untuk mencapai tujuan tertentu. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menggunakan perangkat lunak simulasi untuk memodelkan dan menganalisis sistem kendali dalam praktikum serta membandingkan hasil simulasi dengan pengukuran aktual. (Tingkatan: Penerapan - Angka: 4)	4		
			20		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah	
	Konsep Dasar Kecerdasan Buatan (AI) dalam Konteks	Mahasiswa dapat memahami konsep dasar kecerdasan buatan (AI) dan bagaimana AI dapat diterapkan dalam pengendalian elektronik, termasuk sistem kontrol dan proses otomatisasi. (Tingkatan: Pemahaman - Angka: 3)	3			
	Pengendalian Elektronik: Algoritma dan Metode Kecerdasan Buatan untuk Pengendalian Elektronik:	Mahasiswa dapat mengenal berbagai algoritma dan metode kecerdasan buatan yang digunakan dalam pengendalian elektronik, seperti jaringan saraf tiruan, logika fuzzy, atau algoritma genetika. (Tingkatan: Pemahaman - Angka: 3)	3			
P6	Teknik Kecerdasan Buatan dalam Desain Kontroler Elektronik: Perangkat Lunak dan Platform AI untuk Pengendalian Elektronik: dan Memperbaiki Performa Kecerdasan Buatan dalam Pengendalian Elektronik:	Mahasiswa dapat menerapkan teknik kecerdasan buatan untuk merancang dan mengimplementasikan kontroler elektronik yang cerdas dan adaptif untuk mengendalikan sistem otomatisasi. (Tingkatan: Penerapan - Angka: 4)	4	2	Kecerdasan Buatan	
		Mahasiswa dapat menggunakan perangkat lunak dan platform AI, seperti TensorFlow atau Arduino dengan dukungan AI, untuk mengembangkan dan menguji model kontroler elektronik. (Tingkatan: Penerapan - Angka: 4)	4			
		Mahasiswa dapat menganalisis performa kontroler elektronik berbasis kecerdasan buatan dan memperbaiki model AI untuk mencapai tingkat kinerja yang lebih baik. (Tingkatan: Analisis - Angka: 5)	5			
			19			
D6	Perangkat Kecerdasan Buatan dengan Benar: Algoritma Kecerdasan Buatan dalam Pengendalian Elektronika: Platform AI untuk Pengembangan Model Kontroler:	Mahasiswa dapat mengoperasikan perangkat kecerdasan buatan dengan benar, termasuk mengatur parameter dan menghubungkan komponen untuk mengimplementasikan kontroler elektronika. (Tingkatan: Penerapan - Angka: 4)	4		Praktek	
P6		Mahasiswa dapat menerapkan algoritma kecerdasan buatan yang relevan, seperti jaringan saraf tiruan atau logika fuzzy, untuk merancang dan mengimplementasikan kontroler adaptif	4	2	Kecerdasan Buatan	

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	dan Memperbaiki Performa Kontroler Kecerdasan Buatan: Menilai Efektivitas	dalam pengendalian elektronika. (Tingkatan: Penerapan - Angka: 4)			
	Kecerdasan Buatan dalam Pengendalian Elektronika:	Mahasiswa dapat menggunakan platform kecerdasan buatan, seperti TensorFlow atau platform lainnya, untuk mengembangkan dan menguji model kontroler elektronika berbasis kecerdasan buatan. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menganalisis performa kontroler kecerdasan buatan dalam pengendalian elektronika dan melakukan perbaikan atau penyesuaian untuk meningkatkan kinerja sistem. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat menilai efektivitas dan keunggulan penggunaan kecerdasan buatan dalam pengendalian elektronika dibandingkan dengan pendekatan kontrol tradisional. (Tingkatan: Evaluasi - Angka: 6)	6		
			23		
	Prinsip Kerja Sensor dan Aktuator: Karakteristik dan Performa Sensor: dan Sistem Pengukuran dengan Sensor: Karakteristik dan Kinerja Aktuator: dan Sistem Pengendalian dengan Aktuator:	Mahasiswa dapat memahami prinsip kerja sensor dan aktuator, termasuk jenis-jenis sensor (seperti sensor suhu, sensor cahaya, sensor tekanan) dan aktuator (seperti motor DC, solenoid, pneumatik). (Tingkatan: Pemahaman - Angka: 3)	3		
P4		Mahasiswa dapat menganalisis karakteristik dan performa sensor, termasuk sensitivitas, presisi, range pengukuran, dan waktu tanggap sensor terhadap perubahan lingkungan. (Tingkatan: Analisis - Angka: 5)	5	3	Sensor dan Aktuator
		Mahasiswa dapat merancang dan mengimplementasikan sistem pengukuran menggunakan sensor yang sesuai untuk aplikasi tertentu, serta memahami metode kalibrasi sensor. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Integrasi Sensor dan Aktuator dalam Sistem Otomatisasi:	Mahasiswa dapat menganalisis karakteristik dan kinerja aktuator, termasuk torsi, daya, respons waktu, dan keandalan dalam menggerakkan mekanisme. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat merancang dan mengimplementasikan sistem pengendalian menggunakan aktuator yang sesuai untuk menggerakkan mekanisme atau menjalankan proses otomatisasi. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat memahami bagaimana sensor dan aktuator diintegrasikan dalam sistem otomatisasi untuk mengumpulkan data, menganalisis, dan merespons lingkungan dengan tepat. (Tingkatan: Pemahaman - Angka: 3)	3		
			24		
	Prinsip Kerja Sensor dan Aktuator: Karakteristik dan Performa Sensor: dan Sistem Pengukuran dengan Sensor: Karakteristik dan Kinerja Aktuator: dan Sistem Pengendalian dengan Aktuator: Integrasi Sensor dan Aktuator dalam Sistem Otomatisasi:	Mahasiswa dapat memahami prinsip kerja sensor dan aktuator, termasuk jenis-jenis sensor (seperti sensor suhu, sensor cahaya, sensor tekanan) dan aktuator (seperti motor DC, solenoid, pneumatik). (Tingkatan: Pemahaman - Angka: 3)	3		
P4		Mahasiswa dapat memahami karakteristik dan performa sensor, termasuk sensitivitas, presisi, range pengukuran, dan waktu tanggap sensor terhadap perubahan lingkungan. (Tingkatan: pemahaman - Angka: 5)	3	2	Praktek Sensor dan Aktuator
		Mahasiswa dapat merancang dan mengimplementasikan sistem pengukuran menggunakan sensor yang sesuai untuk aplikasi tertentu, serta memahami metode kalibrasi sensor. (Tingkatan: Penerapan - Angka: 4)	4		Aktuatoi
		Mahasiswa dapat menganalisis karakteristik dan kinerja aktuator, termasuk torsi, daya, respons waktu, dan keandalan dalam menggerakkan mekanisme. (Tingkatan: Analisis - Angka: 5)	5		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat merancang dan mengimplementasikan sistem pengendalian menggunakan aktuator yang sesuai untuk menggerakkan mekanisme atau menjalankan proses otomatisasi. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat memahami bagaimana sensor dan aktuator diintegrasikan dalam sistem otomatisasi untuk mengumpulkan data, menganalisis, dan merespons lingkungan dengan tepat. (Tingkatan: Pemahaman - Angka: 3)	3		
			22		
	Perangkat PLC dengan Benar: Perangkat Lunak PLC untuk Program: dan Sistem Kontrol dengan PLC:	Mahasiswa dapat mengoperasikan perangkat PLC dengan benar, termasuk melakukan pengaturan program, memasukkan variabel, dan menghubungkan perangkat input/output. (Tingkatan: Penerapan - Angka: 4)	4		
P2		Mahasiswa dapat menggunakan perangkat lunak PLC, seperti ladder diagram, function block diagram, atau structured text, untuk membuat program kontrol yang sesuai dengan aplikasi praktikum. (Tingkatan: Penerapan - Angka: 4)	4	1	PLC
		Mahasiswa dapat merancang dan mengimplementasikan sistem kontrol menggunakan PLC untuk mengendalikan perangkat dan proses otomatisasi yang kompleks. (Tingkatan: Penerapan - Angka: 4)	4	_	
			12		
P1	Konsep dan Filosofi Pendidikan Vokasional: Kurikulum dan Program Pendidikan Vokasional:	Mahasiswa dapat memahami konsep dan filosofi pendidikan vokasional, termasuk peran dan tujuan pendidikan vokasional dalam mengembangkan keterampilan dan kompetensi vokasional siswa. (Tingkatan: Pemahaman - Angka: 3)	3	2	Pendidikan Vokasional

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Strategi Pembelajaran Vokasional yang Efektif: Kebutuhan Tenaga Kerja Industri:	Mahasiswa dapat menganalisis kurikulum dan program pendidikan vokasional, termasuk pemilihan materi pembelajaran, pengembangan kurikulum, dan evaluasi hasil belajar. (Tingkatan: Analisis - Angka: 5)	5		
	Keterampilan Pemecahan Masalah dalam Konteks Vokasional:	Mahasiswa dapat mengembangkan strategi pembelajaran vokasional yang efektif, termasuk penggunaan teknologi dalam pembelajaran, pendekatan berbasis proyek, dan metode pembelajaran aktif. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat mengidentifikasi kebutuhan tenaga kerja industri dan merancang program pendidikan vokasional yang sesuai untuk menghasilkan lulusan yang siap kerja. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat mengembangkan keterampilan pemecahan masalah dalam situasi vokasional, termasuk menghadapi tantangan dan mengatasi hambatan dalam karir dan pekerjaan. (Tingkatan: Penerapan - Angka: 4)	4		
			21		
	Konsep Dasar Matematika untuk Teknik: Matematika dalam	Mahasiswa dapat memahami konsep dasar matematika yang relevan dengan teknik, termasuk aljabar, trigonometri, fungsi, dan limit. (Tingkatan: Pemahaman - Angka: 3)	3		
P1	Pemecahan Masalah Teknik: dan Menafsirkan Hasil Matematika dalam Konteks Teknik: Mengaplikasikan Konsep Matematika dalam Bidang Spesifik Teknik:	Mahasiswa dapat menerapkan konsep matematika dalam pemecahan masalah teknik, seperti menganalisis data, menghitung gaya dan torsi, menyelesaikan persamaan diferensial, dan merancang struktur sederhana. (Tingkatan: Penerapan - Angka: 4)	4	2	Matematika Dasar
		Mahasiswa dapat menganalisis dan menafsirkan hasil matematika, seperti grafik fungsi, nilai ekstrim, dan integral, dalam konteks aplikasi teknik. (Tingkatan: Analisis - Angka: 5)	5		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Kemampuan Berpikir Kritis dalam Memecahkan Masalah Matematika Teknik:	Mahasiswa dapat mengaplikasikan konsep matematika dalam bidang spesifik teknik, seperti teknik mesin, teknik elektro, teknik sipil, atau bidang teknik lainnya. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat mengembangkan kemampuan berpikir kritis dalam memecahkan masalah matematika yang kompleks dalam konteks teknik dan merumuskan strategi solusi yang efektif. (Tingkatan: Evaluasi - Angka: 6)	6		
			22		
	dan Terminologi Teknik dalam Bahasa Inggris: Kemampuan Berbicara dalam Bahasa Inggris Teknik: Kemampuan Mendengarkan dan Bahasa Inggris Teknik: Kemampuan Membaca dan Teks Teknik dalam Bahasa Inggris: Kemampuan Menulis dalam Bahasa Inggris Teknik: Bahasa Inggris untuk Berkomunikasi dengan Profesional Teknik:	Mahasiswa dapat mengenal dan memahami terminologi khusus dalam bidang teknik yang digunakan dalam bahasa Inggris, seperti istilah teknis, kata benda, kata kerja, dan frasa yang umum digunakan dalam konteks teknik. (Tingkatan: Pemahaman - Angka: 3)	3		
		Mahasiswa dapat mengembangkan kemampuan berbicara dalam bahasa Inggris untuk mengungkapkan konsep dan ide-ide teknik secara jelas dan tepat, baik dalam presentasi maupun diskusi teknis. (Tingkatan: Penerapan - Angka: 4)	4		
KU		Mahasiswa dapat meningkatkan kemampuan mendengarkan dan memahami bahasa Inggris teknik yang digunakan dalam ceramah, wawancara, atau presentasi teknis. (Tingkatan: Penerapan - Angka: 4)	4	2	Bahasa Inggris Teknik
		Mahasiswa dapat mengembangkan kemampuan membaca dan memahami teks teknik yang kompleks dalam bahasa Inggris, seperti jurnal ilmiah, artikel teknis, dan buku referensi. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat meningkatkan kemampuan menulis dalam bahasa Inggris untuk menyusun laporan teknis, ringkasan proyek, atau dokumentasi teknis lainnya secara akurat dan efektif. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat menggunakan bahasa Inggris untuk berkomunikasi dengan profesional teknik dari berbagai negara dan budaya, baik dalam situasi formal maupun informal. (Tingkatan: Penerapan - Angka: 4)	4		
			23		
		Mahasiswa dapat memahami konsep dasar teknologi, termasuk definisi teknologi, evolusi teknologi, dan peran teknologi dalam perkembangan masyarakat dan industri. (Tingkatan: Pemahaman - Angka: 3)	3		
	Konsep Dasar Teknologi:	Mahasiswa dapat menganalisis dampak teknologi pada berbagai bidang, seperti ekonomi, lingkungan, sosial, dan budaya, serta merancang solusi untuk mengatasi tantangan teknologi terkini. (Tingkatan: Analisis - Angka: 5)	5		
P1	Dampak Teknologi pada Berbagai Bidang: Tren dan Inovasi Teknologi: Mengkaji Etika dan Dampak	Mahasiswa dapat mengidentifikasi tren dan inovasi teknologi terkini, seperti kecerdasan buatan, komputasi awan, Internet of Things (IoT), dan teknologi blockchain, serta memahami potensi penerapannya dalam berbagai industri. (Tingkatan: Pemahaman - Angka: 3)	3	2	Konsep dan Wawasan
	Sosial Teknologi: Teknologi dalam Konteks Pekerjaan dan Industri: Wawasan tentang	Mahasiswa dapat mengkaji isu etika dan dampak sosial dari perkembangan teknologi, termasuk implikasi privasi, keamanan siber, dan pertimbangan etika dalam penggunaan teknologi. (Tingkatan: Analisis - Angka: 5)	5		Teknologi
	Transformasi Digital Revolusi Industri 4.0: Mahasiswa dapat menerapkan teknologi yang relevan dalam konteks pekerjaan dan industri, serta mengoptimalkan pemanfaatannya untuk peningkatan efisiensi dan produktivitas. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat mengembangkan wawasan tentang transformasi digital dan revolusi industri 4.0, serta memahami peran teknologi dalam transformasi tersebut. (Tingkatan: Pemahaman - Angka: 3)	4			
		transformasi digital dan revolusi industri 4.0, serta memahami peran teknologi dalam transformasi tersebut. (Tingkatan:	3		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
			23		
		Mahasiswa dapat memahami konsep matematika terapan yang relevan dengan bidang teknik, seperti aljabar linear, matriks, vektor, transformasi, dan integral. (Tingkatan: Pemahaman - Angka: 3)	3		
	Konsep Matematika Terapan untuk Teknik: Matematika dalam Pemodelan Masalah Teknik:	Mahasiswa dapat menerapkan konsep matematika terapan dalam pemodelan masalah teknik, seperti pemecahan sistem persamaan linear, analisis transformasi koordinat, dan perhitungan integral dalam konteks teknik. (Tingkatan: Penerapan - Angka: 4)	4		Matematika Terapan
D1	dan Menafsirkan Hasil Matematika dalam Konteks Teknik: Perangkat Lunak Matematika untuk Solusi Teknik: Teknik Kalkulus dalam Pemecahan Masalah Teknik: Metode Statistik dalam Analisis Data Teknik:	Mahasiswa dapat menganalisis dan menafsirkan hasil matematika dari pemodelan masalah teknik, serta mengaitkannya dengan interpretasi dan implikasi dalam konteks aplikasi teknik. (Tingkatan: Analisis - Angka: 5)	5	2	
P1		Mahasiswa dapat menggunakan perangkat lunak matematika, seperti MATLAB atau Python, untuk mendukung pemecahan masalah matematika terapan dalam bidang teknik. (Tingkatan: Penerapan - Angka: 4)	4	3	
		Mahasiswa dapat menerapkan teknik kalkulus, termasuk diferensial dan integral, dalam pemecahan masalah teknik seperti perhitungan laju perubahan, optimasi, dan analisis fungsi. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menggunakan metode statistik dalam analisis data teknik, termasuk pengolahan data, analisis regresi, dan pengambilan keputusan berdasarkan data. (Tingkatan: Penerapan - Angka: 4)			
			24		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		anajemen Risiko di Bidang ekatronika: dan Standar K3 di didustri Mekatronika: Program K3 dan Pelatihan eselamatan di Tempat erja: dan Potensi Bahaya di ngkungan Mekatronika: Prinsip Ergonomi dan pengendalian diat pelindung din (APD), penceganan kecelakaan kerja, dan tata tertib keselamatan dalam lingkungan kerja. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat merancang program K3 dan pelatihan keselamatan di tempat kerja untuk karyawan, termasuk penyuluhan bahaya, evakuasi darurat, dan tindakan pengendalian risiko. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat merancang program K3 dan pelatihan keselamatan di tempat kerja untuk karyawan, termasuk penyuluhan bahaya, evakuasi darurat, dan tindakan pengendalian risiko. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat merancang program K3 dan pelatihan keselamatan di tempat kerja untuk karyawan, termasuk penyuluhan pahaya, evakuasi darurat, dan tindakan pengendalian risiko. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat merancang program K3 dan pelatihan keselamatan di tempat kerja untuk karyawan, termasuk penyuluhan pahaya, evakuasi darurat, dan tindakan pengendalian risiko. (Tingkatan: Penerapan - Angka: 4) Mahasiswa dapat merancang program K3 dan pelatihan keselamatan di tempat kerja untuk karyawan, termasuk penyuluhan pahaya, evakuasi darurat, dan tindakan pengendalian risiko. (Tingkatan: Penerapan - Angka: 4)	3		K3 dan Hukum Ketenagakerjaan
	Manajemen Risiko di Bidang Mekatronika:		4		
P1	Industri Mekatronika: Program K3 dan Pelatihan Keselamatan di Tempat		4	2	
FI	dan Potensi Bahaya di Lingkungan Mekatronika:		5		
	Inspeksi K3 dan Audit Kesehatan Kerja:	Mahasiswa dapat menerapkan prinsip ergonomi dan desain kerja yang aman dalam perancangan stasiun kerja dan perangkat mekatronika untuk mengurangi risiko cedera atau penyakit akibat bekerja. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat memahami inspeksi K3 dan audit kesehatan kerja di lingkungan mekatronika untuk menilai kepatuhan terhadap kebijakan K3 dan kondisi kesehatan karyawan. (Tingkatan: memahami - Angka: 3)	3		
			23		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat memahami konsep metodologi penelitian dan perbedaannya ketika diterapkan dalam konteks R&D, termasuk proses pengembangan produk, inovasi teknologi, dan penelitian ilmiah terapan. (Tingkatan: Pemahaman - Angka: 3)	3		
	Konsep Metodologi Penelitian dalam Konteks R&D:	Mahasiswa dapat mengidentifikasi berbagai pendekatan penelitian yang relevan dalam R&D, seperti penelitian eksperimental, studi kasus, penelitian survei, dan penelitian tindakan, serta memilih pendekatan yang sesuai dengan tujuan penelitian. (Tingkatan: Analisis - Angka: 5)	5		
P8	Pendekatan Penelitian yang Relevan untuk R&D: Rencana Penelitian R&D yang Efektif: Teknik Pengumpulan Data dalam Penelitian R&D: dan Menafsirkan Hasil Penelitian R&D: Mahasiswa da efektif, term menentukan merencanakan (Tingkatan: Pe Mahasiswa da data dalam pakuesioner, dara validitas data ya) Mahasiswa da penelitian R&D pengambilan	, , , , , , , , , , , , , , , , , , , ,	4	2	Metodelogi penelitian
		Mahasiswa dapat menggunakan berbagai teknik pengumpulan data dalam penelitian R&D, seperti wawancara, observasi, kuesioner, dan studi pustaka, serta memastikan keandalan dan validitas data yang dikumpulkan. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menganalisis data yang diperoleh dari penelitian R&D dan menafsirkan hasilnya untuk mendukung pengambilan keputusan yang berbasis bukti dan perbaikan produk atau teknologi. (Tingkatan: Analisis - Angka: 5)	5		
			21		
S	Nilai-nilai Pancasila sebagai Dasar Etika dan Moral:	Mahasiswa dapat memahami nilai-nilai Pancasila sebagai dasar etika dan moral yang mengatur perilaku sehari-hari, termasuk kesetiaan, gotong royong, toleransi, keadilan, dan tanggung jawab sosial. (Tingkatan: Pemahaman - Angka: 3)	3	2	Pancasila

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Nilai-nilai Pancasila dalam Interaksi Sosial: Pentingnya Kesatuan dan Persatuan dalam Kehidupan	Mahasiswa dapat menerapkan nilai-nilai Pancasila dalam interaksi sosial, seperti menghormati perbedaan, menghargai hak-hak orang lain, dan berkomunikasi dengan sopan dan santun. (Tingkatan: Penerapan - Angka: 4)	4		
	Berbangsa dan Bernegara: dan Menghormati Nilai- nilai Luhur Bangsa Indonesia:	Mahasiswa dapat memahami pentingnya kesatuan dan persatuan dalam kehidupan berbangsa dan bernegara, serta bagaimana nilai-nilai Pancasila dapat memperkuat persatuan dan memupuk semangat kebhinekaan. (Tingkatan: Pemahaman - Angka: 3)	3		
	Nilai-nilai Pancasila dalam Pengambilan Keputusan: Mengaplikasikan Etika Pancasila dalam Berbagai Situasi dan Profesi:	Mahasiswa dapat mengenal dan menghormati nilai-nilai luhur bangsa Indonesia yang tercermin dalam Pancasila, seperti keragaman budaya, semangat gotong royong, dan semangat nasionalisme. (Tingkatan: Pengetahuan - Angka: 2)	2		
		Mahasiswa dapat mengintegrasikan nilai-nilai Pancasila dalam pengambilan keputusan, baik dalam kehidupan pribadi maupun dalam konteks organisasi atau masyarakat, untuk mencapai keadilan dan kesejahteraan bersama. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat mengaplikasikan etika Pancasila dalam berbagai situasi dan profesi, termasuk dalam bidang pekerjaan, pelayanan masyarakat, dan kepemimpinan, untuk memperkuat integritas dan moralitas. (Tingkatan: Penerapan - Angka: 4)	4		
			21		
S	Konsep Kewarganegaraan dan Identitas Nasional: Sistem Pemerintahan dan Tata Negara Indonesia:	Mahasiswa dapat memahami konsep kewarganegaraan, identitas nasional, dan peran aktif sebagai warga negara dalam membangun dan memperkuat kesatuan bangsa. (Tingkatan: Pemahaman - Angka: 3)	3	2	Kewarganegaraan

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Hak dan Kewajiban Warga Negara: Peran dan Fungsi Lembaga Sosial dalam	Mahasiswa dapat mengenal sistem pemerintahan dan tata negara Indonesia, termasuk struktur pemerintahan, lembaga negara, dan mekanisme demokrasi yang berlaku. (Tingkatan: Pengetahuan - Angka: 2)	2		
	Masyarakat: Kesadaran Politik dan Partisipasi Aktif dalam Kehidupan Demokrasi:	Mahasiswa dapat memahami hak dan kewajiban warga negara, termasuk hak asasi manusia, hak politik, dan tanggung jawab dalam menjalankan kewarganegaraan. (Tingkatan: Pemahaman - Angka: 3)	3		
	Mengapresiasi Keanekaragaman Budaya dan Keragaman Indonesia:	Mahasiswa dapat mengenal peran dan fungsi lembaga sosial dalam masyarakat, seperti lembaga pendidikan, lembaga agama, dan lembaga sosial lainnya, serta bagaimana lembaga-lembaga tersebut berkontribusi dalam membentuk kewarganegaraan yang beradab. (Tingkatan: Pengetahuan - Angka: 2)	2		
		Mahasiswa dapat mengembangkan kesadaran politik dan partisipasi aktif dalam kehidupan demokrasi, termasuk ikut serta dalam pemilihan umum, diskusi publik, dan gerakan sosial yang membawa perubahan positif bagi masyarakat. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat mengapresiasi keanekaragaman budaya dan keragaman Indonesia sebagai sumber kekayaan dan kekuatan bangsa, serta menghormati hak-hak masyarakat adat dan kelompok minoritas. (Tingkatan: Penerapan - Angka: 4)	4		
			18		
KU	Kosa Kata dan Istilah dalam Konteks Public Speaking:	Mahasiswa dapat menguasai kosa kata dan istilah yang sering digunakan dalam konteks public speaking, termasuk kosakata untuk presentasi, pidato, dan berbicara di depan umum. (Tingkatan: Pemahaman - Angka: 3)	3	2	Public Speaking

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Kemampuan Berbicara dalam Bahasa Inggris secara Lancar dan Efektif: Jenis dan Struktur Pidato dalam Bahasa Inggris:	Mahasiswa dapat mengembangkan kemampuan berbicara dalam bahasa Inggris secara lancar dan efektif, termasuk penggunaan intonasi, vokal, dan bahasa tubuh untuk menyampaikan pesan dengan jelas dan meyakinkan. (Tingkatan: Penerapan - Angka: 4)	4		
	Keterampilan Menyusun Materi Presentasi dalam Bahasa Inggris: Menguji Kemampuan Public Speaking dalam Simulasi	Mahasiswa dapat mengenal jenis-jenis dan struktur pidato dalam bahasa Inggris, seperti pidato informatif, persuasif, dan menghibur, serta mampu merancang konten pidato yang terstruktur dengan baik. (Tingkatan: Pengetahuan - Angka: 2)	2		
	Presentasi: Rasa Gugup dan Performa Berbicara di Depan Umum:	Mahasiswa dapat mengembangkan keterampilan menyusun materi presentasi dalam bahasa Inggris, termasuk penggunaan slide, grafik, dan informasi yang relevan untuk mendukung argumen dalam pidato. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menguji kemampuan public speaking mereka dalam simulasi presentasi, baik secara individu maupun dalam kelompok, untuk meningkatkan kepercayaan diri dan mengidentifikasi area yang perlu ditingkatkan. (Tingkatan: Evaluasi - Angka: 6)	6		
		Mahasiswa dapat mengatasi rasa gugup dan meningkatkan performa berbicara di depan umum melalui latihan teknik relaksasi, pernapasan, dan visualisasi. (Tingkatan: Penerapan - Angka: 4)	4		
			23		
P11	Konsep Etika Profesi dan Pentingnya Etika dalam Karir Profesional:	Mahasiswa dapat memahami konsep etika profesi dan mengenali pentingnya etika dalam menjalankan karir profesional, termasuk integritas, tanggung jawab, dan moralitas. (Tingkatan: Pemahaman - Angka: 3)	3	3	Etika Profesi

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Kode Etik Profesi dan Standar Perilaku Profesional: Tantangan Etika dalam	Mahasiswa dapat mengenal kode etik profesi yang berlaku dalam bidang tertentu dan memahami standar perilaku profesional yang harus dijunjung tinggi sebagai bagian dari tanggung jawab profesi. (Tingkatan: Pengetahuan - Angka: 2)	2		
	Praktik Profesional: Prinsip Etika dalam Pengambilan Keputusan Profesional: Dilema Etika dengan	Mahasiswa dapat mengidentifikasi berbagai tantangan etika yang mungkin dihadapi dalam praktik profesional dan merancang strategi untuk menghadapinya dengan bijaksana. (Tingkatan: Analisis - Angka: 5)	5		
	Pendekatan Rasional dan Berdasarkan Nilai-nilai: Menyusun Laporan Kasus Etika dan Solusi yang	Mahasiswa dapat menerapkan prinsip etika dalam pengambilan keputusan profesional, termasuk dalam situasi yang kompleks dan berpotensi menimbulkan konflik kepentingan. (Tingkatan: Penerapan - Angka: 4)	4		
	Proporsional:	Mahasiswa dapat mengatasi dilema etika dengan menggunakan pendekatan rasional dan berdasarkan nilai-nilai etika yang berlaku, serta mempertimbangkan implikasi dari setiap pilihan yang diambil. (Tingkatan: Evaluasi - Angka: 6)	6		
		Mahasiswa dapat menyusun laporan kasus etika yang memuat analisis situasi, pertimbangan etika, dan solusi yang proporsional berdasarkan kode etik dan prinsip etika yang relevan. (Tingkatan: Evaluasi - Angka: 6)	6		
			26		
C	Bahasa Indonesia yang Baik dan Benar: Sumber Referensi yang Relevan dan Terpercaya: Argumentasi dan Rencana Penelitian yang Tepat:	Mahasiswa dapat menguasai penggunaan bahasa Indonesia yang baik dan benar dalam penulisan proposal karya ilmiah, termasuk tata bahasa, ejaan, dan kalimat yang jelas dan baku. (Tingkatan: Penerapan - Angka: 4)	4	2	Bahasa Indonesia
S		Mahasiswa dapat mengidentifikasi sumber referensi yang relevan dan terpercaya dalam menunjang proposal karya ilmiah, termasuk jurnal ilmiah, buku, dan artikel terkini. (Tingkatan: Analisis - Angka: 5)	5	2	Danasa muunesid

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Ilmiah dengan Struktur yang Kohesif: Penyuntingan dan Revisi untuk Memperbaiki Kualitas - Proposal:	Mahasiswa dapat mengembangkan argumentasi yang kuat dan rencana penelitian yang tepat dalam proposal karya ilmiah, dengan menyusun kerangka pemikiran dan metode penelitian yang sesuai. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menyusun proposal karya ilmiah dengan struktur yang kohesif dan teratur, sehingga tulisan mudah dipahami dan alur pikiran tersusun dengan baik. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat melakukan penyuntingan dan revisi untuk memperbaiki kualitas proposal karya ilmiah, termasuk memeriksa kesalahan bahasa, kelengkapan informasi, dan konsistensi argumen. (Tingkatan: Evaluasi - Angka: 6)	6		
			23		
	Konsep Dasar Agama yang Dipelajari: Berbagai Agama dan Kebudayaan dalam Konteks Global: Menghargai Keanekaragaman Agama dan Keyakinan: Nilai-nilai Agama dalam Kehidupan Sehari-hari: Berdialog dan Berdiskusi dengan Toleransi dan	Mahasiswa dapat memahami konsep dasar agama yang dipelajari dalam mata kuliah ini, termasuk keyakinan, ajaran, sejarah, dan nilai-nilai agama yang relevan. (Tingkatan: Pemahaman - Angka: 3)	3		
S		Mahasiswa dapat mengenal berbagai agama dan kebudayaan yang ada di dunia, serta memahami perbedaan dan kesamaan di antara mereka untuk meningkatkan toleransi dan pemahaman lintas budaya. (Tingkatan: Pengetahuan - Angka: 2)	2	2	Agama
		Mahasiswa dapat menghargai keanekaragaman agama dan keyakinan yang ada di masyarakat, serta menghormati hak setiap individu untuk beragama sesuai dengan keyakinan pribadi mereka. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Sopan Santun tentang Agama: Dampak Sosial dan Budaya Agama dalam	Mahasiswa dapat menerapkan nilai-nilai agama yang relevan dalam kehidupan sehari-hari, seperti etika, moralitas, kasih sayang, dan sikap rendah hati, untuk membentuk karakter yang baik. (Tingkatan: Penerapan - Angka: 4)	4		
	Masyarakat:	Mahasiswa dapat berdialog dan berdiskusi dengan toleransi dan sopan santun tentang agama, serta menghargai pandangan dan perspektif agama lain tanpa menimbulkan konflik. (Tingkatan: Evaluasi - Angka: 6)	6		
		Mahasiswa dapat Memahami dampak sosial dan budaya agama dalam masyarakat, baik dalam konteks sejarah maupun kekinian, serta memahami bagaimana agama berperan dalam membentuk norma dan nilai sosial. (Tingkatan: Pemahaman - Angka: 5)	3		
			22		
	Konsep Dasar Otomasi Industri: Jenis-jenis Sistem Otomasi Industri: Mampu Memprogram Sistem Otomasi Industri: Sensor dan Aktuator dalam Sistem Otomasi Industri: Kinerja Sistem Otomasi dan Memecahkan Masalah: Proyek Otomasi Industri dengan Berorientasi pada Keamanan dan Keandalan:	Mahasiswa dapat memahami konsep dasar otomasi industri, termasuk prinsip kerja sistem otomasi, komponen-komponen yang digunakan, dan keuntungan penggunaan otomasi dalam industri. (Tingkatan: Pemahaman - Angka: 3)	3		
P2		Mahasiswa dapat mengenal berbagai jenis sistem otomasi industri, seperti sistem PLC (Programmable Logic Controller), SCADA (Supervisory Control and Data Acquisition), dan DCS (Distributed Control System), serta memahami perbedaan dan aplikasi masing-masing sistem. (Tingkatan: Pengetahuan - Angka: 2)	2	3	Otomasi industri
		Mahasiswa dapat memprogram sistem otomasi industri, terutama sistem PLC, dengan menggunakan bahasa pemrograman yang relevan dan melakukan simulasi untuk memverifikasi kinerja program. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Konsep Dasar Otomasi Industri: Jenis-jenis Sistem Otomasi Industri: Sensor dan Aktuator dalam Sistem Otomasi Industri: Proyek Otomasi Industri dengan Berorientasi pada	Mahasiswa dapat mengintegrasikan sensor dan aktuator dalam sistem otomasi industri, serta mengatur interaksi antara komponen-komponen tersebut untuk mencapai pengendalian proses yang efisien. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menganalisis kinerja sistem otomasi industri, mengidentifikasi masalah yang mungkin terjadi, dan mengimplementasikan solusi untuk meningkatkan kinerja dan efisiensi sistem. (Tingkatan: Analisis - Angka: 5)	5		
	Keamanan dan Keandalan:	Mahasiswa dapat merancang proyek otomasi industri dengan berfokus pada aspek keamanan dan keandalan sistem, serta mempertimbangkan aspek etika dalam penerapan otomasi. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat memahami konsep dasar otomasi industri, termasuk prinsip kerja sistem otomasi, komponen-komponen yang digunakan, dan keuntungan penggunaan otomasi dalam industri. (Tingkatan: Pemahaman - Angka: 3)	3		
		Mahasiswa dapat mengenal berbagai jenis sistem otomasi industri, seperti sistem PLC (Programmable Logic Controller), SCADA (Supervisory Control and Data Acquisition), dan DCS (Distributed Control System), serta memahami perbedaan dan aplikasi masing-masing sistem. (Tingkatan: Pengetahuan - Angka: 2)	2		
		Mahasiswa dapat memahami sensor dan aktuator dalam sistem otomasi industri, serta mengatur interaksi antara komponen-komponen tersebut untuk mencapai pengendalian proses yang efisien. (Tingkatan: Pemahaman - Angka: 4)	3		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	b	Mahasiswa dapat memahami proyek otomasi industri dengan berfokus pada aspek keamanan dan keandalan sistem, serta mempertimbangkan aspek etika dalam penerapan otomasi. (Tingkatan: Pemahaman - Angka: 4)	3		
			33		
	Konsep Dasar Otomasi Industri dalam Praktik: Jenis-jenis Perangkat Otomasi dan Penerapannya: Memprogram Perangkat	Mahasiswa dapat memahami konsep dasar otomasi industri secara praktik, meliputi pengenalan komponen otomasi, sistem kontrol, dan proses pengendalian industri. (Tingkatan: Pemahaman - Angka: 3)	3		
		Mahasiswa dapat mengenal berbagai jenis perangkat otomasi industri, seperti PLC (Programmable Logic Controller), HMI (Human Machine Interface), dan sensor-sensor industri, serta mengerti penerapannya dalam skenario kasus nyata. (Tingkatan: Pengetahuan - Angka: 2)	2		
P2	Otomasi dengan Praktik langsung: dan Memecahkan Masalah pada Sistem Otomasi:	Mahasiswa dapat memprogram perangkat otomasi, khususnya PLC dan HMI, dengan menggunakan bahasa pemrograman yang relevan serta menguji dan mengamati hasilnya secara langsung. (Tingkatan: Penerapan - Angka: 4)	4	2	Praktek Otomasi Industri
	Perangkat Otomasi untuk Mengendalikan Proses Industri: Mengoptimalkan Kinerja	Mahasiswa dapat menganalisis dan memecahkan masalah yang mungkin terjadi dalam sistem otomasi industri, seperti menemukan dan mengatasi gangguan pada perangkat atau program yang digunakan. (Tingkatan: Analisis - Angka: 5)	5		
Sistem Oto Praktik dan I	Sistem Otomasi melalui Praktik dan Uji Coba:	Mahasiswa dapat mengintegrasikan berbagai perangkat otomasi untuk mengendalikan proses industri, seperti merancang rangkaian kontrol dan mengamati respons sistem secara real- time. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat mengoptimalkan kinerja sistem otomasi melalui praktik dan uji coba, termasuk mengatur parameter, memperbaiki kesalahan, dan melakukan penyesuaian sesuai kebutuhan. (Tingkatan: Penerapan - Angka: 4)	4		
			22		
		Mahasiswa dapat memahami konsep dasar teori sistem bertingkat, termasuk definisi sistem bertingkat, hubungan antara sub sistem dalam sistem bertingkat, dan prinsip kestabilan sistem. (Tingkatan: Pemahaman - Angka: 3)	3		
	Konsep Dasar Teori Sistem Bertingkat:	Mahasiswa dapat mengenal struktur dan komponen dalam sistem bertingkat, seperti sub sistem, input, output, dan interaksi antara sub sistem, serta mengerti bagaimana informasi mengalir di antara mereka. (Tingkatan: Pengetahuan - Angka: 2)	2		Sistem Bertingkat
P8	dalam Sistem Bertingkat: Kestabilan Sistem Bertingkat:	Struktur dan Komponen dalam Sistem Bertingkat: Kestabilan Sistem Bertingkat: Kestabilan Sistem Bertingkat: Mahasiswa dapat menganalisis kestabilan sistem bertingkat dengan menggunakan metode-metode analisis yang relevan, seperti analisis stabilitas, respon sistem, dan batas stabilitas. (Tingkatan: Analisis - Angka: 5) Mahasiswa dapat menganalisis masalah dan tantangan yang mungkin timbul dalam sistem bertingkat, termasuk gangguan	5	2	
	dalam Sistem Bertingkat:		5		
		Mahasiswa dapat merancang strategi untuk meningkatkan kestabilan sistem bertingkat, seperti merancang mekanisme umpan balik atau pengendalian untuk memperbaiki respon sistem dan meminimalkan dampak dari gangguan. (Tingkatan: Penerapan - Angka: 4)	4		
			19		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Prinsip-prinsip Desain Mesin Lanjut: Perangkat Lunak Desain	Mahasiswa dapat menguasai prinsip-prinsip desain mesin lanjut, termasuk analisis kekuatan, dinamika mesin, desain elemen mesin, dan aplikasi teknologi terbaru dalam desain mesin. (Tingkatan: Pemahaman - Angka: 3)	3		
		Mahasiswa dapat menggunakan perangkat lunak desain dan simulasi untuk mendukung proses desain mesin lanjut, termasuk CAD (Computer-Aided Design) dan CAE (Computer-Aided Engineering). (Tingkatan: Penerapan - Angka: 4)	4		
P8	dan Simulasi untuk Mesin: Mesin dengan Memperhatikan Aspek Ergonomi dan Keamanan:	Mahasiswa dapat merancang mesin dengan memperhatikan aspek ergonomi dan keamanan, termasuk mempertimbangkan faktor kenyamanan pengguna dan pencegahan risiko kecelakaan kerja. (Tingkatan: Penerapan - Angka: 4)	4	2	Desain Mesin Lanjut
	Sumber Energi dan Komponen Mesin: Tantangan dan Kendala dalam Desain Mesin Lanjut:	onen Mesin: komponen mesin dalam desain yang efisien dan optimal, tangan dan Kendala termasuk mempertimbangkan sumber daya energi terbarukan 4			
		Mahasiswa dapat mengidentifikasi tantangan dan kendala yang mungkin muncul dalam desain mesin lanjut, serta mengusulkan solusi alternatif untuk mengatasi masalah yang kompleks. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat memahami konsep dasar teknologi produksi	20		
P7	Konsep Teknologi Produksi dan Presisi dalam Skala Besar:	dan presisi dalam skala besar, termasuk pengertian dan peran teknologi dalam proses pembuatan sistem dengan tingkat akurasi tinggi. (Tingkatan: Pemahaman - Angka: 3)	3	2	Teknologi Produksi dan Presisi

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Proses Produksi dan Presisi untuk Sistem Skala Besar: Teknologi Produksi dalam Skala Besar:	Mahasiswa dapat mengenal berbagai proses produksi dan presisi yang relevan dalam pembuatan sistem skala besar, seperti teknologi CNC (Computer Numerical Control), manufaktur berbasis laser, dan teknologi produksi lainnya. (Tingkatan: Pengetahuan - Angka: 2)	2		
	Mengoptimalkan Proses Produksi untuk Efisiensi dan Kualitas Tinggi: dan Proses Produksi Secara Holistik:	Mahasiswa dapat menerapkan teknologi produksi dan presisi dalam pembuatan sistem skala besar, termasuk mengoperasikan peralatan dan mesin produksi dengan tepat untuk mencapai hasil yang diinginkan. (Tingkatan: Penerapan - Angka: 4)	4		
	Secara Horistik.	Mahasiswa dapat mengoptimalkan proses produksi untuk mencapai efisiensi tinggi dan kualitas produk yang baik dalam pembuatan sistem skala besar, termasuk menggunakan metode analisis dan perencanaan produksi yang tepat. (Tingkatan: Evaluasi - Angka: 6)	6		
		Mahasiswa dapat merancang dan mengimplementasikan proses produksi secara holistik untuk pembuatan sistem skala besar, menggabungkan teknologi presisi dengan penjadwalan dan pengawasan produksi yang efektif. (Tingkatan: Evaluasi - Angka: 6)	6		
			21		
	Konsep Dasar Mekatronika: Alat dan Perangkat Mekatronika: dan Membangun Sistem Mekatronika Sederhana:	Mahasiswa dapat mengenal konsep dasar mekatronika, termasuk penggabungan mekanika, elektronika, dan teknologi kontrol dalam sistem mekatronika. (Tingkatan: Pengetahuan - Angka: 2)	2		
P8		Mahasiswa dapat menggunakan berbagai alat dan perangkat mekatronika, seperti sensor, aktuator, mikrokontroler, dan perangkat lunak untuk membangun dan menguji sistem mekatronika. (Tingkatan: Penerapan - Angka: 4)	4	2	Workshop Mekatronika

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Kinerja Sistem Mekatronika: Tantangan dan Hambatan dalam Pembuatan Sistem	Mahasiswa dapat merancang dan membangun sistem mekatronika sederhana dengan menggunakan komponen-komponen mekatronika yang telah dipelajari. (Tingkatan: Penerapan - Angka: 4)	4		
	Mekatronika:	Mahasiswa dapat menganalisis kinerja sistem mekatronika yang telah dibuat, termasuk melakukan pengukuran dan evaluasi terhadap hasil pengujian. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat mengidentifikasi tantangan dan hambatan yang mungkin timbul dalam pembuatan sistem mekatronika, serta mengusulkan solusi alternatif untuk mengatasi masalah yang muncul. (Tingkatan: Analisis - Angka: 5)	5		
			20		
		Mahasiswa dapat mengenal konsep dasar robotika, termasuk jenis-jenis robot, kinematika robot, sensor dan aktuator yang digunakan, serta prinsip kerja robot dalam lingkungan fisik. (Tingkatan: Pengetahuan - Angka: 2)	2		
P2	Konsep Dasar Robotika: Pemrograman Robot: dan Membangun Robot: Kinerja dan Performa	Dasar Robotika: raman Robot: mbangun Robot: Mahasiswa dapat menguasai pemrograman robot, termasuk menggunakan bahasa pemrograman robot yang relevan dan mengimplementasikan algoritma kontrol untuk menggerakkan robot dengan tenat (Tingkatan: Penerapan - Angka: 4)	4	2	Robotika
	Robot: Mengoptimalkan Algoritma Kontrol Robot:	Mahasiswa dapat merancang dan membangun robot dari awal, mulai dari perancangan mekanik hingga pemasangan sensor dan aktuator, serta menguji performa robot yang telah dibuat. (Tingkatan: Penerapan - Angka: 4)	4	_	T COOCUING
		Mahasiswa dapat menganalisis kinerja dan performa robot yang telah dibuat, termasuk mengukur kecepatan, akurasi, dan ketepatan gerakan robot dalam berbagai skenario tugas. (Tingkatan: Analisis - Angka: 5)	5		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat mengoptimalkan algoritma kontrol robot untuk meningkatkan performa robot, meminimalkan waktu siklus, dan mengatasi hambatan dalam navigasi. (Tingkatan: Evaluasi - Angka: 6)	6		
			21		
		Mahasiswa dapat mengoperasikan robot dengan tepat dan aman, termasuk mengenali kontrol dan antarmuka robot, serta mengimplementasikan tindakan keamanan dalam penggunaan robot. (Tingkatan: Penerapan - Angka: 4)	4		
	Robot dengan Tepat dan Aman: Menguji dan Mengoptimalkan Kinerja Robot dalam Lingkungan Nyata: dan Melaksanakan Proyek Robotika:	Mahasiswa dapat menguji dan mengoptimalkan kinerja robot dalam lingkungan nyata, seperti mengatur parameter, memperbaiki kesalahan, dan melakukan penyesuaian agar robot dapat beroperasi dengan lebih efisien. (Tingkatan: Evaluasi - Angka: 6)	6		
P2		Mahasiswa dapat merancang dan melaksanakan proyek robotika berdasarkan perancangan dan algoritma kontrol yang telah dipelajari, serta menyusun rencana kerja dan mengatur alokasi sumber daya untuk mencapai tujuan proyek. (Tingkatan: Penerapan - Angka: 4)	4	2	Praktek Robotika
	Robot: dan Memecahkan Masalah pada Robot:	Mahasiswa dapat mengintegrasikan sensor dan aktuator pada robot, serta mengatur interaksi antara perangkat tersebut untuk meningkatkan kemampuan robot dalam beradaptasi dengan lingkungannya. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menganalisis dan memecahkan masalah yang mungkin timbul pada robot, seperti kegagalan perangkat, kesalahan pemrograman, atau kendala navigasi. (Tingkatan: Analisis - Angka: 5)	5		
			23		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah	
		Mahasiswa dapat memahami konsep dasar kendali adaptif dan prinsip auto-tuning PID, termasuk pengertian dan manfaatnya dalam sistem kendali. (Tingkatan: Pemahaman - Angka: 3)	3			
	Konsep Dasar Kendali Adaptif dan Auto-Tuning PID:	Mahasiswa dapat mengenal berbagai metode dan algoritma kendali adaptif serta teknik auto-tuning PID yang digunakan untuk mengoptimalkan performa sistem kendali. (Tingkatan: Pengetahuan - Angka: 2)	2			
	Metode Kendali Adaptif dan Auto-Tuning PID: Algoritma Kendali Adaptif dalam Praktik:	Mahasiswa dapat menerapkan algoritma kendali adaptif dalam praktik, termasuk memprogram dan mengkonfigurasi kendali adaptif pada sistem kendali yang relevan. (Tingkatan: Penerapan - Angka: 4)	4			
P8	Teknik Auto-Tuning PID dalam Praktik: Performa Kendali Adaptif dan PID yang Di-Tuning	Mahasiswa dapat menerapkan teknik auto-tuning PID dalam praktik, seperti mengidentifikasi parameter PID secara otomatis dan melakukan penyesuaian parameter sesuai respons sistem. (Tingkatan: Penerapan - Angka: 4)	4	2	Kendali Adaptif	
	Otomatis: Sistem Kendali dengan Optimalisasi Kendali Adaptif dan PID:	Mahasiswa dapat menganalisis performa sistem kendali dengan kendali adaptif dan PID yang di-tuning otomatis, termasuk melakukan pengukuran performa dan membandingkan hasilnya. (Tingkatan: Analisis - Angka: 5)	5			
		Mahasiswa dapat menganalisis sistem kendali dengan optimalisasi kendali adaptif dan PID, termasuk memilih metode yang paling sesuai dan mengatur parameter untuk mencapai tujuan kendali. (Tingkatan: Analisis - Angka: 6)	5			
			23			
P8	Algoritma Kendali Adaptif dalam Sistem Nyata:	Mahasiswa dapat menerapkan berbagai algoritma kendali adaptif dalam sistem nyata, termasuk mengimplementasikan algoritma pada perangkat keras dan melakukan konfigurasi sesuai dengan kebutuhan sistem. (Tingkatan: Penerapan - Angka: 4)	4	2	Praktek Kendali Adaptif	

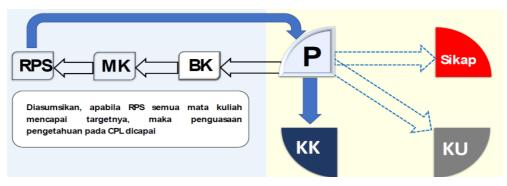
Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Mengoptimalkan Parameter Kendali Adaptif untuk Performa Terbaik: Respon Sistem dengan Kendali Adaptif: Sistem Kendali yang Stabil dan Tahan Gangguan:	Mahasiswa dapat mengoptimalkan parameter kendali adaptif untuk mencapai performa terbaik pada sistem, termasuk mengatur laju adaptasi dan memperhitungkan karakteristik sistem yang berbeda. (Tingkatan: Evaluasi - Angka: 6)	6		
		Mahasiswa dapat menganalisis respon sistem dengan kendali adaptif, termasuk membandingkan performa dengan sistem kendali konvensional dan mengidentifikasi kelebihan dan kekurangannya. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat merancang sistem kendali adaptif yang stabil dan mampu mengatasi gangguan dari lingkungan, serta melakukan analisis stabilitas sistem secara matematis. (Tingkatan: Penerapan - Angka: 4)	4		
			19		
	Proyek Robotika Kompleks: Algoritma Kendali Canggih pada Robot: Sensor dan Komponen pada Robot: Performa Robot dan Memperbaiki Kesalahan: Proyek Kolaboratif dalam Tim:	Mahasiswa dapat mengembangkan proyek robotika kompleks yang melibatkan perancangan, pembuatan, dan pemrograman robot dengan tingkat kesulitan lebih tinggi. (Tingkatan: Penerapan - Angka: 4)	4		
P8		Mahasiswa dapat menerapkan algoritma kendali canggih pada robot, seperti kendali adaptif, kendali gerak lanjutan, atau kendali berbasis kecerdasan buatan untuk meningkatkan kinerja robot. (Tingkatan: Penerapan - Angka: 4)	4	2	Workshop Robotika Lanjut
		Mahasiswa dapat mengintegrasikan berbagai sensor dan komponen pada robot, serta mengatur interaksi antara perangkat tersebut untuk meningkatkan kemampuan robot dalam beradaptasi dengan lingkungannya. (Tingkatan: Penerapan - Angka: 4)	4		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat menganalisis performa robot dalam berbagai situasi dan mengidentifikasi masalah atau kesalahan yang mungkin terjadi, serta merancang solusi untuk meningkatkan kinerja robot. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat berkolaborasi dalam tim untuk mengembangkan proyek robotika lanjut, termasuk membagi tugas, berkomunikasi secara efektif, dan mengatasi tantangan bersama. (Tingkatan: Evaluasi - Angka: 6)	6		
			23		
	Proyek Robotika Kompleks: Mengaplikasikan Algoritma Kendali Lanjut pada Robot: Sensor dan Sistem Penginderaan pada Robot: dan Mengoptimalkan Kinerja Robot: Bekerja dalam Tim untuk Proyek Robotika Skala Lanjut:	Mahasiswa dapat mengembangkan proyek robotika yang kompleks, mulai dari perencanaan, perancangan, pembuatan, hingga pengujian robot dengan tingkat kesulitan lebih tinggi. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat mengaplikasikan algoritma kendali lanjut pada robot, seperti kendali adaptif, kendali gerak lanjutan, atau kendali berbasis kecerdasan buatan untuk meningkatkan performa robot dalam tugas-tugas khusus. (Tingkatan: Penerapan - Angka: 4)	4		
P8		Mahasiswa dapat Memahami berbagai sensor dan sistem penginderaan pada robot, serta mengatur interaksi antara sensor-sensor tersebut untuk meningkatkan kemampuan robot dalam berinteraksi dengan lingkungannya. (Tingkatan: Pemahaman - Angka: 4)	3	2	Robotika Lanjut
		Mahasiswa dapat menganalisis kinerja robot dalam berbagai situasi, mengidentifikasi potensi masalah, dan mengoptimalkan parameter kendali serta konfigurasi hardware untuk meningkatkan performa robot. (Tingkatan: Evaluasi - Angka: 6)	6		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
		Mahasiswa dapat bekerja dalam tim untuk menyelesaikan proyek robotika skala lanjut, termasuk berkolaborasi, berkomunikasi efektif, dan membagi tugas secara efisien dalam pencapaian tujuan proyek. (Tingkatan: Evaluasi - Angka: 6)	6		
			23		
		Mahasiswa dapat mengenal konsep dasar sistem benam, termasuk arsitektur, perangkat keras, dan perangkat lunak yang digunakan dalam sistem benam. (Tingkatan: Pengetahuan - Angka: 2)	2		
	Konsep Dasar Sistem Benam: Penggunaan Mikrokontroler dan	Mahasiswa dapat menguasai penggunaan mikrokontroler dan perangkat keras lainnya yang digunakan dalam sistem benam, serta memahami prinsip kerja dan fungsionalitas masing-masing komponen. (Tingkatan: Penerapan - Angka: 4)	4		
P8	Perangkat Keras Sistem Benam: Perangkat Lunak untuk Sistem Benam:	Mahasiswa dapat mengembangkan perangkat lunak untuk sistem benam, termasuk pemrograman mikrokontroler, antarmuka perangkat keras, dan komunikasi dengan sensor dan aktuator. (Tingkatan: Penerapan - Angka: 4)	4	2	Workshop Sistem Benam
	Benam Sederhana: Kinerja dan Performa Sistem Benam:	Mahasiswa dapat merancang dan membuat sistem benam sederhana berdasarkan spesifikasi dan kebutuhan yang diberikan, serta melakukan pengujian untuk memastikan sistem berfungsi dengan baik. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat menganalisis kinerja dan performa sistem benam yang telah dibuat, termasuk melakukan pengukuran dan evaluasi terhadap hasil pengujian. (Tingkatan: Analisis - Angka: 5)	5		
			19		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Konsep dan Teori Manajemen Proyek: Tujuan dan Persyaratan	Mahasiswa dapat memahami konsep dan teori dasar dalam manajemen proyek, termasuk siklus hidup proyek, struktur organisasi proyek, serta alat dan teknik manajemen proyek. (Tingkatan: Pemahaman - Angka: 3)	2		
		Mahasiswa dapat mengidentifikasi tujuan proyek dan persyaratan yang harus dipenuhi, serta melakukan analisis risiko awal dalam perencanaan proyek. (Tingkatan: Analisis - Angka: 5)	5		
	Proyek: Merencanakan Proyek dengan Teliti: Melaksanakan dan Mengawasi Proyek dengan	Mahasiswa dapat merencanakan proyek dengan teliti, termasuk menyusun jadwal, alokasi sumber daya, dan anggaran biaya, serta menentukan tanggung jawab tim proyek. (Tingkatan: Penerapan - Angka: 4)	4		Manajemen proyek
P9	Efisien: Mengelola Perubahan dan Permasalahan dalam Proyek: Mengevaluasi Hasil Proyek	Mahasiswa dapat melaksanakan dan mengawasi proyek dengan efisien, termasuk melakukan pemantauan progres proyek, mengatasi kendala, dan berkomunikasi secara efektif dengan anggota tim dan pemangku kepentingan proyek. (Tingkatan: Penerapan - Angka: 4)	4	2	
	dan Pembelajaran dari Pengalaman Proyek:				
	Pengalaman Proyek:	Mahasiswa dapat mengevaluasi hasil proyek, melakukan analisis kinerja, serta mengidentifikasi pembelajaran dari pengalaman dalam proyek untuk meningkatkan manajemen proyek di masa depan. (Tingkatan: Evaluasi - Angka: 6)	6		
			21		
P8	Konsep dan Prinsip Desain Sistem Mekatronika: Teknik Perancangan Mekanika dalam Sistem Mekatronika:	Mahasiswa dapat memahami konsep dan prinsip dasar dalam desain sistem mekatronika, termasuk integrasi mekanika, elektronika, dan pemrograman untuk menciptakan sistem yang terintegrasi dan berkinerja tinggi. (Tingkatan: Pemahaman - Angka: 3)	3	3	Desain Sistem Mekatronika

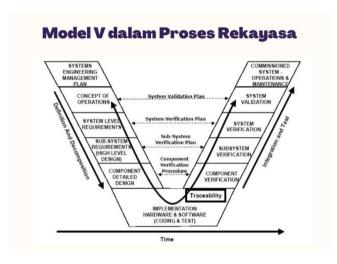
Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Sistem Elektronika dan Kontrol dalam Mekatronika: Komponen Mekanika, Elektronika, dan Kontrol:	Mahasiswa dapat menguasai teknik perancangan mekanika yang relevan, termasuk pemilihan bahan, analisis kekuatan, dan perancangan komponen mekanika untuk sistem mekatronika. (Tingkatan: Penerapan - Angka: 4)	4		
	Menguji dan Performa Sistem Mekatronika: dan Membuat Proyek Sistem Mekatronika:	Mahasiswa dapat mengimplementasikan sistem elektronika dan kendali dalam mekatronika, termasuk perancangan rangkaian elektronika, sensor, aktuator, dan pemrograman mikrokontroler. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat mengintegrasikan komponen mekanika, elektronika, dan kendali ke dalam sistem mekatronika yang terkoordinasi dan berfungsi dengan baik. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat melakukan pengujian dan analisis performa sistem mekatronika, termasuk mengukur respons sistem, membandingkan hasil dengan spesifikasi, dan melakukan perbaikan jika diperlukan. (Tingkatan: Analisis - Angka: 5)	5		
		Mahasiswa dapat merancang dan membuat proyek sistem mekatronika yang kompleks, meliputi perencanaan, perancangan, pembuatan, dan pengujian sistem secara keseluruhan. (Tingkatan: Penerapan - Angka: 4)	4		
			24		
P9	Konsep dan Karakteristik Technopreneurship: dan Mengevaluasi Peluang Bisnis Teknologi:	technopreneurship, termasuk identifikasi peluang bisnis berbasis teknologi dan inovasi serta sikap kewirausahaan. (Tingkatan:	2	Technopreunership	
P9	dan Membuat Rencana Bisnis Berbasis Teknologi: Inovasi dan Teknologi dalam Bisnis:	Mahasiswa dapat mengidentifikasi dan mengevaluasi peluang bisnis berbasis teknologi, termasuk analisis pasar, kebutuhan konsumen, dan potensi keuntungan. (Tingkatan: Analisis - Angka: 5)	5		recimopieuneisilip


Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Mengelola Risiko dan Keuangan dalam Bisnis Teknologi: Mempresentasikan Rencana Bisnis secara Profesional:	Mahasiswa dapat merancang dan membuat rencana bisnis yang komprehensif untuk bisnis berbasis teknologi, termasuk strategi pemasaran, sumber daya yang dibutuhkan, dan proyeksi keuangan. (Tingkatan: Penerapan - Angka: 4)	4		
	DISTIIS SECATA PROTESIONAL.	Mahasiswa dapat menerapkan inovasi dan teknologi sebagai bagian dari strategi bisnis untuk meningkatkan efisiensi, kualitas, dan daya saing produk atau layanan. (Tingkatan: Penerapan - Angka: 4)	4		
		Mahasiswa dapat mengelola risiko yang terkait dengan bisnis teknologi, termasuk mengidentifikasi, mengevaluasi, dan mengurangi risiko yang mungkin terjadi. Selain itu, mahasiswa juga mampu mengelola keuangan bisnis dengan baik. (Tingkatan: Evaluasi - Angka: 6)	6		
			22		
P0	Merencanakan Pelaksanaan Proyek Akhir:	Mahasiswa dapat merancang dan merencanakan pelaksanaan proyek akhir, termasuk menyusun rencana kegiatan, mengidentifikasi sumber daya yang diperlukan, dan menentukan langkah-langkah untuk mencapai tujuan proyek. (Tingkatan: Penerapan - Angka: 4)	4		
P9	Mempresentasikan Proposal Proyek Akhir secara Efektif:	Mahasiswa dapat mempresentasikan proposal proyek akhir secara efektif di hadapan dosen pembimbing atau penguji, menyampaikan informasi dengan jelas dan meyakinkan. (Tingkatan: Evaluasi - Angka: 6)	6	1	Proposal
			10	<u> </u>	
P9	Lingkungan Industri dan Proses Produksi:	Mahasiswa dapat memahami lingkungan industri tempat magang, struktur organisasi, dan proses produksi yang dilakukan oleh perusahaan. (Tingkatan: Pengetahuan - Angka: 2)	2	3	Magang Industri

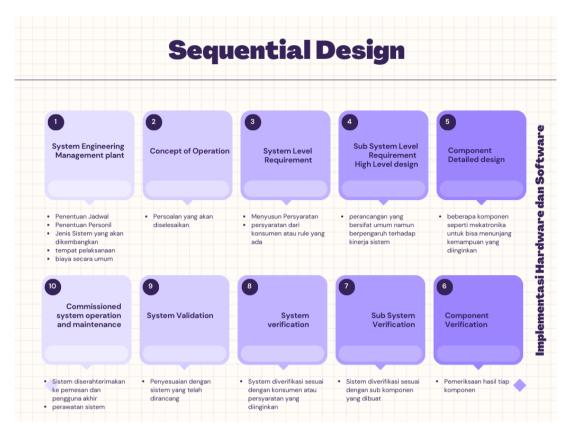
Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Pengetahuan Teknik dalam Proyek Industri: Permasalahan dan	Mahasiswa dapat menerapkan pengetahuan teknik yang telah dipelajari dalam proyek atau tugas industri yang relevan. (Tingkatan: Penerapan - Angka: 3)	3		
	Mencari Solusi: Evaluasi Kinerja Proses atau Sistem Industri: Beradaptasi dengan Tim dan Lingkungan Industri:	Mahasiswa dapat menganalisis permasalahan yang muncul di lingkungan industri dan mencari solusi yang tepat berdasarkan pengetahuan teknis dan kreativitas. (Tingkatan: Analisis - Angka: 4)	4		
	Inisiatif dan Kreativitas dalam Proyek: Mempraktikkan Etika	Mahasiswa dapat mengevaluasi kinerja proses atau sistem yang ada di industri, termasuk mengidentifikasi potensi perbaikan dan efisiensi. (Tingkatan: Evaluasi - Angka: 5)	5		
	Profesi dan K3 di Lingkungan Kerja: Mengkomunikasikan Hasil dan Pengalaman Magang:	Mahasiswa dapat beradaptasi dengan baik dalam tim kerja industri, berkontribusi secara aktif, dan berkomunikasi efektif dengan anggota tim serta atasan. (Tingkatan: Penerapan - Angka: 3)	3		
	Peluang Karir dan Rencana Pengembangan Diri:	Mahasiswa dapat mengembangkan inisiatif dan kreativitas dalam menyelesaikan proyek industri, mencari cara baru untuk meningkatkan proses atau produk yang ada. (Tingkatan: Kreativitas - Angka: 6)	6		
	Konsep dan Teori dalam Bidang Teknik Terapan: Permasalahan dan	Mahasiswa dapat mempraktikkan etika profesi dan penerapan keselamatan dan kesehatan kerja (K3) di lingkungan industri dengan bertanggung jawab. (Tingkatan: Penerapan - Angka: 3)	3		
	Menentukan Tujuan Proyek: Merencanakan dan Mendesain Rancangan	Mahasiswa dapat mengkomunikasikan hasil dan pengalaman magang secara lisan atau tertulis dengan jelas dan sistematis. (Tingkatan: Penerapan - Angka: 3)	3		
	Proyek: Pengetahuan dan Keterampilan Teknik dalam	Mahasiswa dapat mengidentifikasi peluang karir yang relevan di industri, serta merencanakan pengembangan diri untuk menghadapi persaingan kerja. (Tingkatan: Analisis - Angka: 4)	4		
	Pelaksanaan Proyek:		33		

Domain CPL	Bahan Kajian	СРМК	Bobot	SKS	Mata Kuliah
	Data dan Hasil Proyek dengan Teliti: Membuat Kesimpulan dan	Mahasiswa dapat mengembangkan konsep dan teori yang relevan dalam bidang teknik terapan yang menjadi fokus Proyek Akhir. (Tingkatan: Kreativitas - Angka: 3)	6		
	Rekomendasi Berdasarkan Hasil Proyek: Mengkomunikasikan Hasil Proyek Secara Efektif:	Mahasiswa dapat mengembangkan permasalahan nyata yang akan dipecahkan melalui Proyek Akhir dan menentukan tujuan yang ingin dicapai. (Tingkatan: Kreativitas - Angka: 5)	6		
	Beradaptasi dengan Perubahan dan Tantangan dalam Proyek:	Mahasiswa dapat mengembangkan dan mendesain rancangan Proyek Akhir dengan memperhatikan metode, sumber daya, dan jadwal pelaksanaan. (Tingkatan: Kreativitas - Angka: 4)	6		
P9		Mahasiswa dapat mengembangkan pengetahuan dan keterampilan teknik yang telah dipelajari selama kuliah dalam pelaksanaan Proyek Akhir. (Tingkatan: Kreativitas - Angka: 4)	6		
		Mahasiswa dapat mengembangkan, menganalisisnya dengan metode yang tepat, dan menginterpretasi hasil Proyek Akhir secara kritis dan teliti. (Tingkatan: Kreativitas - Angka: 5)	6	5	Proyek Akhir
		Mahasiswa dapat membuat kesimpulan dan rekomendasi berdasarkan hasil Proyek Akhir untuk memberikan kontribusi pada bidang teknik terapan yang diteliti. (Tingkatan: Evaluasi - Angka: 6)	6		
		Mahasiswa dapat mengkomunikasikan hasil Proyek Akhir dengan baik melalui laporan tertulis, presentasi, atau demonstrasi produk, sesuai dengan standar akademik yang berlaku. (Tingkatan: Kreativitas - Angka: 4)	4		
		Mahasiswa dapat beradaptasi dengan perubahan atau tantangan yang mungkin terjadi selama pelaksanaan Proyek Akhir dan mencari solusi yang tepat. (Tingkatan: Kreativitas - Angka: 4)	4		

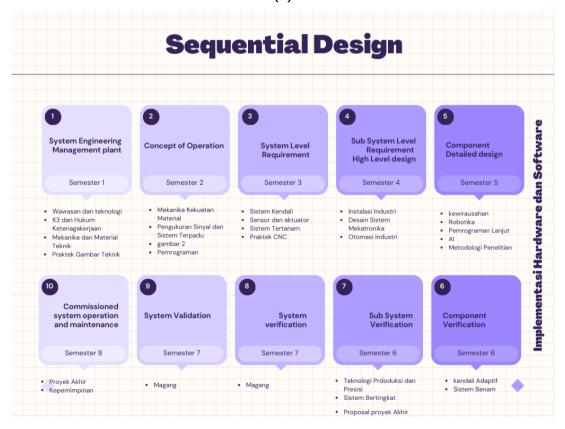
Domain CPL	Bahan Kajian		СРМК	Bobot	SKS	Mata Kuliah
	Kreativitas dan II dalam Proyek:	novasi	Mahasiswa dapat mengembangkan kreativitas dan inovasi dalam merancang dan menyelesaikan Proyek Akhir untuk mencapai hasil yang lebih baik. (Tingkatan: Kreativitas - Angka: 6)	6		
				50		
			Jumlah	1363		
			Rata-rata	21,63492063		
		•	bobot/sks	9,465277778		


Deskripsi penguasaan pengetahuan dalam Capaian Pembelajaran Lulusan (CPL) memiliki dampak yang signifikan terhadap pencapaian ranah Keterampilan Khusus. Saat pengetahuan dikuasai dengan baik, kompetensi keterampilan khusus dapat terlaksana secara langsung. Sementara itu, penguasaan pada ranah Sikap dan Keterampilan Umum juga terwujud secara tidak langsung melalui proses ini. Ranah Pengetahuan yang disajikan dalam Bahan Kajian melewati tahap-tahap transisi, dari mata kuliah hingga Rencana Pembelajaran Semester (RPS), yang masing-masing mencakup capaian pembelajaran yang mengartikulasikan kompetensi yang diharapkan. RPS ini menjadi instrumen penting dalam melihat sejauh mana penguasaan pengetahuan telah tercapai dan memberikan umpan balik berharga untuk memastikan pencapaian target pembelajaran.

Gambar 3.11 Deskripsi Penguasaan Pengetahuan


3.4.3 Penerapan Model V Dalam Struktur Mata Kuliah

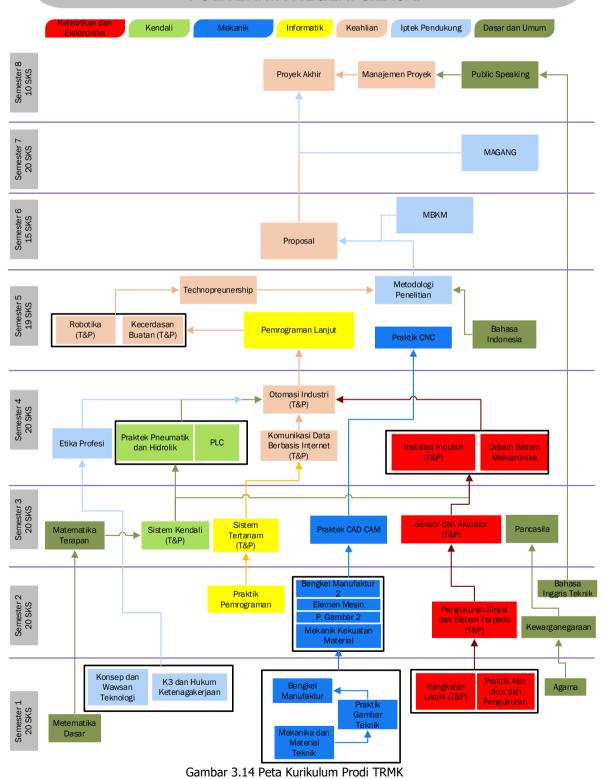
Untuk memastikan kelancaran program, penting untuk mengatur durasi dengan cermat agar tidak terjadi tumpang tindih pada pemerolehan pengetahuan. Dalam kerangka ini, pendekatan Model V dalam proses rekayasa menjadi landasan. Tahapannya, yang mencakup verifikasi dan validasi, memainkan peranan kunci. Pendekatan ini menggunakan model desain berurutan (sequential design), di mana tahapan mulai dari perencanaan hingga validasi diselaraskan dengan struktur Model V yang telah terdefinisi pada gambar di bawah ini.



Gambar 3.12 Model V dalam Proses Rekayasa

Model V adalah pendekatan rekayasa sistem yang menggambarkan tahapan terstruktur dari perencanaan hingga validasi. Pada bagian kiri "V," dimulai dari spesifikasi awal dan berlanjut ke bawah melalui perancangan yang semakin mendalam. Setelah mencapai titik terendah, implementasi dimulai pada bagian kanan "V," di mana komponen-komponen sistem diintegrasikan dan diverifikasi. Pada tahap teratas "V," validasi dilakukan dengan menguji kesesuaian antara solusi yang dihasilkan dan spesifikasi awal. Implementasi model V dalam penentuan tingkatan mata kuliah mengacu pada prinsip bahwa setiap tahap pada Model V mempengaruhi tingkatan pembelajaran yang sesuai untuk mata kuliah tertentu. Tahapan awal seperti perencanaan dan spesifikasi mengarah pada mata kuliah yang memperkenalkan dasar-dasar konsep. Tahap perancangan dan implementasi melibatkan mata kuliah yang lebih mendalam, di mana pengetahuan diterapkan dalam konteks praktis dan desain. Kemudian, tahap verifikasi dan validasi memengaruhi mata kuliah yang mendorong analisis kritis, evaluasi, dan validasi solusi yang dihasilkan. Dengan demikian, pendekatan Model V dalam penentuan tingkatan mata kuliah memastikan pembelajaran yang terstruktur dan sesuai dengan tahapan rekayasa yang paralel.

(a)



(b)

Gambar 3.13 (a) pengertian dasar pada Model V (b) Implementasi pada model V dalam penentuan Tingkatan Mata Kuliah

3.4.4 Peta Kurikulum

POHON KURIKULUM PRODI SARJANA TERAPAN TEKNOLOGI REKAYASA MEKATRONIKA JURUSAN REKAYASA ELEKTRO DAN MEKATRONIKA POLITEKNIK NEGERI CILACAP

88

3.4.5 Struktur Mata Kuliah Serta Bobot SKS

CNAC	No	Kode MK	Mata Kuliah	SKS		Jam		
SMS	No	Kode IVIK	iviata Kunan	Т	Р	Т	Р	
	1	0000012	Agama	2		2		
	2	1210022	Konsep dan Wawasan Teknologi	2		2		
	3	1210032	Metematika Dasar	2		2		
	4	1210042	Rangkaian Listrik	2		2		
	5	1210052	Mekanika dan Material Teknik	2		2		
	6	1210062	K3 dan Hukum Ketenagakerjaan	2		2		
1	7	1211072	Praktik Alat Ukur dan Pengukuran		2		6	
-	8	1211082	Praktik Rangkaian Listrik		2		6	
	9	1211092	Praktik Gambar Teknik		2		6	
	10	1211102	Bengkel Manufaktur 1		2		6	
			Jumlah	12	8	12	24	
			Julillati	2	20		36	
			Presentase	60%	40%	33%	67%	

SMS	No	No Kode MK	Mata Kuliah	SK	S	Jam	
SIVIS	INO	Kode IVIK	iviata Kullan	Т	P	T	Р
	1	0000042	Kewarganegaraan	2		2	
	2	1220022	Bahasa Inggris Teknik	2		2	
	3	1220033	Mekanika Kekuatan Material	3		3	
	4	1220043	Pengukuran Sinyal dan Sistem Terpadu	3		3	
	5	1220052	Elemen Mesin	2		2	
	6	1221061	Praktik Pengukuran Sinyal dan Sistem Terpadu	1			3
2	7	1221072	Bengkel Manufaktur 2		2		6
_	8	1221082	Praktik Pemrograman		3		9
	9	1221092	Praktik Gambar 2		2		6
	Jumlah				8	12	24
		Julilati				36	
			Presentase	60%	40%	33%	67%

SMS	No	No Kode MK	Mata Kuliah	S	Jam		
SIVIS	INO	Kode IVIK	iviata Kullan	Т	P	T	Р
	1	0000032	Pancasila	2		2	
	2	1230023	Matematika Terapan	3		3	
	3	1230032	Sensor dan Aktuator	2		2	
	4	1230043	Sistem Kendali	3		3	
	5	1230052	Sistem Tertanam	2		2	
	6	1231062	Praktek Sensor dan Aktuator		2		6
3	7	1231072	Praktek Sistem Kendali		2		6
	8	1231082	Praktek Sistem Tertanam		2		6
	9	1231091	Praktek CAD CAM		2		6
			12	8	12	24	
			Jumlah	2	20		86
			Presentase	60%	40%	33%	67%

CNAC	No	No Kode MK	Mata Kuliah	S	KS	Jam	
SMS	NO	Kode IVIK	Mata Kuliah	Т	Р	T	Р
	1	1240012	Etika Profesi	2		2	
	2	1240023	Desain Sistem Mekatronika	3		3	
	3	1240032	Instalasi Industri	2		2	
	4	1240042	Komunikasi data berbasis internet	2		2	
	5	1240053	Otomasi Industri	3		3	
	6	1241062	Praktek Instalasi Industri		2		6
4	7	1241071	Praktek Komunikasi data Berbasis Internet		1		3
•	8	1241082	Praktek Pneumatik dan Hidrolik		2		6
	9	1241092	Praktek Otomasi		2		6
	10	1241101	PLC		1		3
			Jumlah	12	8	12	24
			Julillati	20		36	
			Presentase	60%	40%	33%	67%

CNAC	Na	Vada MIV	Mata Kuliah	S	SKS		ım
SMS	No	Kode MK	Mata Kullan		Р	Т	Р
	1	0000022	Bahasa Indonesia	2		2	
	2	1250022	Metodologi Penelitian	2		2	
	3	1250033	Kecerdasan Buatan	3		3	
	4	1250043	Robotika	3		3	
	5	1250052	Technopreunership	2		2	
5	6	1251062	Pemrograman Lanjut		2		6
J	7	1251072	Praktikum Kecedasan Buatan		2		6
	8	1251082	Praktikum Robotika		2		6
	9	1251091	Praktik CNC		1		3
			Jumlah	12	7	12	21
			Juiman	19		33	
			Presentase	63%	37%	36%	64%

SMS	No	Kode MK	Mata Kuliah		KS	Ja	m	
SIVIS	INO	Kode IVIK	iviata Kullati		Р	T	Р	
	1		Mata Kuliah Pilihan	8	6	8	18	
	2	1261101	Proposal	1		1		
6			Jumlah	9	6	9	18	
			Julilali		15	27		
			60%	40%	33%	67%		
SMS	NI-	1/	Bank Kullah		SKS	Ja	m	
SIVIS	No	Kode MK	Mata Kuliah	Т	Р	Т	Р	
	1	12710120	Magang Industri		20		60	
7			Jumlah	0	20	0	60	
,			Juman		20		60	
			0%	100%	0%	100%		
				<u> </u>	SKS	Ja	m	
SMS	No	Kode MK	Mata Kuliah	Т	Р	Т	Р	
	1	1280012	Public Speaking	2		2		
	2	1280022	Manajemen Proyek	2		2		
8	3	1281036	Proyek Akhir		6		1	
J			Jumlah	4	6	4	1	
			Juniun		10	22		
			Presentase	40%	60%	18%	829	

Mata Kuliah Piliihan

CNAC	No	Kode MK	Mata Kuliah	S	SKS		Jam	
SMS	140 KOUE IVIK		Node IVIA		Р	Т	Р	
	1	1260012	Sistem Bertingkat	2		2		
	2	1260022	Kendali Adaptif	2		2		
	3	1260032	Desain Mesin Lanjut	2				
	4	1260042	Teknologi Produksi dan Presisi	2				
	5	1260052	Robotika Lanjut	2				
	6	1261062	Workshop Mekatronika		2		6	
	7	1261072	Workshop Kendali Adaptif		2		6	
	8	1261082	Worshop Robotika Lanjut		2		6	
	9	1261092	Workshop Sistem Benam		2		6	
			lumlah	9	6	9	18	
			Jumlah	1	L 5	2	27	
			Presentase	60%	40%	33%	67%	

Rincian Persemester

	Т	Р	Total	JT	JP	Total
Semester 1	12	8	20	12	24	36
Semester 2	12	8	20	12	24	36
Semester 3	12	8	20	12	24	36
Semester 4	12	8	20	12	24	36
Semester 5	12	7	19	12	21	33
Semester 6	9	6	15	9	18	27
Semester 7	0	20	20	0	60	60
Semester 8	4	6	10	4	18	22
			144			286

3.5 Rencana Pembelajaran Semester

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI POLITEKNIK NEGERI CILACAP PROGRAM STUDI SARJANA TERAPAN TEKNOLOGI REKAYASA MEKATRONIKA

Kode Dokumen

MATA KULIAH(MK) KODE RUMPUN MK BOBOT (sks) SEMESTER Tgl Penyusunan	OILAOAI -		Jl. Dr. Soetomo No. 1, Sidakaya Cilacap, Jawa Tengah 53212						
Mekanika dan Kekuatan Material									
Dosen Pengembang RPS Koordinator RMK Ka PRODI	` '	KODE		BOBOT (sks)		SEMESTER	Tgl Penyusunan		
Capaian Pembelajaran CPL – PRODI yang Dibebankan pada MK CPL1(S9) Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahliannya secara mandiri. CPL2(P1) Mampu menguasai konsep matematika teknik, kinematika, elektronika, manufaktur, dan perancangan rekayasa ya diperlukan untuk analisis dan perancangan komponen, bagian, dan sistem manufaktur dari skala kecil hingga sk besar CPL4(KU1) Mampu menerapkan pemikiran logis, kritis, inovatif, bermutu, dan terukur dalam melakukan pekerjaan yang spesifik di bidang keahliannya serta sesuai dengan standar kompetensi kerja rekayasa CPL5(KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan	Mekanika dan Kekuatan Material					2			
Mohammad Nurhilal., S.T., M.Pd., M.T M.T	OTORISASI/PENGESAHAN	Dosen Penger	nbang RPS	Koordinator RM	IK	Ka PRODI			
Mohammad Nurhilal., S.T., M.Pd., M.T M.T									
Mohammad Nurhilal., S.T., M.Pd., M.T M.T									
Mohammad Nurhilal., S.T., M.Pd., M.T M.T									
Mohammad Nurhilal., S.T., M.Pd., M.T M.T									
Mohammad Nurhilal., S.T., M.Pd., M.T M.T				Mohammad Nurh	ilal ST MPd	Handi Durnata M	ſТ		
Capaian Pembelajaran CPL - PRODI yang Dibebankan pada MK CPL1(S9) Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahliannya secara mandiri. CPL2(P1) Mampu menguasai konsep matematika teknik, kinematika, elektronika, manufaktur, dan perancangan rekayasa ya diperlukan untuk analisis dan perancangan komponen, bagian, dan sistem manufaktur dari skala kecil hingga sk besar CPL4(KU1) Mampu menerapkan pemikiran logis, kritis, inovatif, bermutu, dan terukur dalam melakukan pekerjaan yang spesifik di bidang keahliannya serta sesuai dengan standar kompetensi kerja rekayasa CPL5(KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan		Mohammad N	furhilal., S.T., M.Pd., M.T		., ., ., ., ., .,	Tichai i amata, iv	1.1		
Pembelajaran CPL1(S9) Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahliannya secara mandiri. CPL2(P1) Mampu menguasai konsep matematika teknik, kinematika, elektronika, manufaktur, dan perancangan rekayasa ya diperlukan untuk analisis dan perancangan komponen, bagian, dan sistem manufaktur dari skala kecil hingga sk besar CPL4(KU1) Mampu menerapkan pemikiran logis, kritis, inovatif, bermutu, dan terukur dalam melakukan pekerjaan yang spesifik di bidang keahliannya serta sesuai dengan standar kompetensi kerja rekayasa CPL5(KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan	Capaian		L – PRODI yang Dibebankan pada MK						
diperlukan untuk analisis dan perancangan komponen, bagian, dan sistem manufaktur dari skala kecil hingga sk besar CPL4(KU1) Mampu menerapkan pemikiran logis, kritis, inovatif, bermutu, dan terukur dalam melakukan pekerjaan yang spesifik di bidang keahliannya serta sesuai dengan standar kompetensi kerja rekayasa CPL5(KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan	•		· · · · · · · · · · · · · · · · · · ·						
besar CPL4(KU1) Mampu menerapkan pemikiran logis, kritis, inovatif, bermutu, dan terukur dalam melakukan pekerjaan yang spesifik di bidang keahliannya serta sesuai dengan standar kompetensi kerja rekayasa CPL5(KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan	,	CPL2(P1)	Mampu menguasai konsep matematik	a teknik, kinematika	a, elektronika, manu	ıfaktur, dan peranca	angan rekayasa yang		
CPL4(KU1) Mampu menerapkan pemikiran logis, kritis, inovatif, bermutu, dan terukur dalam melakukan pekerjaan yang spesifik di bidang keahliannya serta sesuai dengan standar kompetensi kerja rekayasa CPL5(KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan			diperlukan untuk analisis dan peranca	angan komponen, ba	agian, dan sistem m	anufaktur dari skal	a kecil hingga skala		
spesifik di bidang keahliannya serta sesuai dengan standar kompetensi kerja rekayasa CPL5(KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan									
CPL5(KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan		CPL4(KU1)					ekerjaan yang		
humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan		CDI 5/(III)		•		•	1 '1 '		
karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan		CPL5(KU3)		1 0	- ·	•	_		
				•		• 1			
I IIICHE GHE E GARLIN A GAIGH I AHIAH DOLEGI GAIL GHE E					s kerja, spesifikasi (uesaiii, atau esai sei	iii, uaii		
CPL6(KK1) M Mampu menerapkan sains, technology,engineering and matematika (STEM) ke dalam proyek teknologi rekaya		CPL6(KK1)			l matematika (STF)	M) ke dalam provel	z teknologi rekayasa		
mekatronika untuk menyelesaikan permasalahan dalam bidang otomasi dan robotik		CI LO(IIIII)					i teknologi tekuyusu		
CPL7(KK3) Mampu merancang proyek teknologi rekayasa mekatronika dengan cara analisa rangkaian elektronika, mekan		CPL7(KK3)							
informatik dan kendali dalam lingkup jasa dan produk									
Capaian Pembelajaran Mata Kuliah (CPMK)									

	CPMK1	Mahasiswa dapat memahami konsep dasar kinematika, termasuk gerak translasi, gerak rotasi, kecepatan, dan
	GD) (VIA	percepatan, serta mengaplikasikannya pada berbagai sistem mekanik.
	CPMK2	Mahasiswa dapat menghitung dan menganalisis kecepatan dan percepatan pada berbagai titik dalam suatu
		sistem mekanik menggunakan metode kinematika yang tepat
	CPMK3	Mahasiswa dapat memahami konsep dasar statistik mekanik, termasuk distribusi probabilitas, variabel acak, dan analisis statistik dalam sistem mekanik.
	CD) (II.)	
	CPMK4	Mahasiswa dapat menggunakan metode statistik untuk menganalisis perilaku sistem mekanik, termasuk distribusi probabilitas, analisis regresi, dan keandalan sistem. (Tingkatan: Penerapan - Angka: 4)
	CPMK5	Mahasiswa dapat memahami konsep dasar dinamika, termasuk hukum Newton, momen inersia, dan gaya-gaya yang bekerja pada sistem mekanik. (Tingkatan: Pemahaman - Angka: 3)
	CPMK6	Mahasiswa dapat menganalisis gaya dan momen yang bekerja pada sistem mekanik, termasuk menghitung momen inersia, momen torsi, dan perpindahan gaya. (Tingkatan: Analisis - Angka: 5)
	СРМК	Mahasiswa dapat menghitung dan menganalisis energi kinetik dan potensial dalam sistem mekanik, serta memahami konsep konservasi energi. (Tingkatan: Analisis - Angka: 5)
	Akhir Tiap Tahapan Belajar (Sub-CPMK)	
	Sub-CPMK1	Mahasiswa mampu mengetahui persamaan gerak (C2, A3) (CPMK 1)
	Sub-CPMK2	Mahasiswa mampu Mengidentifikasi dan menentukan berbagai jenis gerak mekanis dalam dinamis sistem
		mekatronika (C2, A3) (CPMK 2)
	Sub-CPMK3	Mahasiswa mampu Menganalisa gerakan dan perpindahan pada mekanisme sistem mekatronika (C2, A3) (CPMK 2)
	Sub-CPMK4	Mahasiswa mampu menganalisa sistem dinamis (C2, A3) (CPMK 2)
	Sub-CPMK5	Mahasiswa mampu Mensintesa mekanisme untuk tujuan gerak tertentu (C2, A3) (CPMK 3)
	Sub-CPMK6	Mahasiswa mampu mengetahui Elemen-elemen mekanisme (C2, A3) (CPMK 3)
	Sub-CPMK7	Mahasiswa mampu menganalisa dinamika (C2, A3) (CPMK 3)
	Sub-CPMK8	Mahasiswa mampu Menyeimbangkan Massa-massa (C2, A3) (CPMK 3)
	Sub-CPMK9	Mahasiswa mampu Dasar Getaran Mekanik (C2, A3) (CPMK 3)
Deskripsi Singkat MK	Mata kuliah N	Mekanika dan Dinamika berbobot 2 sks bersifat wajib lulus. Materi perkuliahan meliputi Konsep Dasar Dinamika
		nematika, mekanisme dalam mesin dan elemen-elemennya, analisis kinematis dan dinamis yang meliputi analisis
		rcepatan, gaya statis dan gaya dinamis, dan sintesa suatu mekanisme. Mahasiswa diharapkan dapat menganalisa
	pergerakan ya	ing ada dalam suatu mekanisme dan gaya yang ditimbulkannya dan atau mampu merancang mekanisme yang tuk suatu gerakan tertentu.

xa.		Utama	1. Myszka, Dav	rid H. (2005). Machines	s and mechanisms: applied kiner	natic analysis (3rd Ed.). Pea	rson Prent	ice
Minggu Ke-	Kemampuan Akhir yang Diharapkan	Bahan Kajian / Pokok Bahasan	Metode Pembelajara n	Waktu Pembelajaran	Pengalaman Belajar Mahasiswa	Kriteria Penilaian dan Indikator	Bobot	Acuan
1-2 Dosen Pe	Mahasiswa mampu ngamputahui ngamputahui ngamputahui ngamputahui ngamputahui ngamputahui ngamputahui	a. Peran Kinematika dan Dinamika dalam bidang Teknik Mesin b. Analisis grafis dengan trigonometri; c. Operasi Vektor d. Kinematika Partikel	And Machine Martin, G.H. online melalui e- learning PNC dan diskusi melalui group whatsapp	Belajar materi Rinematics and Dynamelalui e learning: 2 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 2 x 50 menit	mics of Machines, McGraw-Hill melalui Whatsapp group, b. Belajar mandiri dan mengerjakan tugas di elearning dan/atau google classroom c. Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya.	a. Kebenaran konsep b. Kedalaman analisis c. Berpikir kritis	10%	2,3
3-4	Mahasiswa mampu Mengidentifika si dan menentukan berbagai jenis gerak mekanis dalam dinamis sistem mekatronika	a. Mekanisme, anggota penyusunnya dan jenisjenisnya; b. Linkage	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	Belajar materi melalui e-learning: 2 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 2 x 50 menit	 a. Menidentifikasi jenis- jenis link, sambungan dan mekanisme; b. Memiliki gambaran mekanisme untuk tujuan gerak tertentu; 	a. Kebenaran konsep b. Kedalaman analisis c. Berpikir kritis	20%	1,3,4
4-5	Mahasiswa mampu Menganalisa gerakan dan	a. Jenis-jenis gerak; b. Analisa gerakan	Kuliah online melalui e-	Belajar materi melalui e-learning: 2 x 50 menit	a. Mengidentifikasi jenis- jenis gerak;	c. Kebenaran konsep d. Kedalaman analisis	10%	1,2,3,4

	perpindahan pada mekanisme sistem mekatronika		learning PNC dan diskusi melalui group whatsapp	Belajar Mandiri dan Tugas Terstruktur: 2 x 50 menit	b. Mendemonstrasikan gerak utuh suatu mekanisme;	e. Berpi	kir kritis		
6-8	Mahasiswa mampu menganalisa sistem dinamis	 a. Analisa kecepatan dan percepatan secara grafis; b. Analisa kecepatan dan percepatan analitis; c. Pengenalan analisis berbantuan 	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	4 x 50 menit	a. Menganalisa aspek kinematik suatu mekanisme; b. Terampil menggunakan alat gambar; c. Menganalisis dengan berbantuan software komputer; d. Bekerja dalam kelompok; e. Mempresentasi-kan hasil diskusi	d. Partis dalar	ep laman sis kir kritis sipasi n kelompok ampuan	15%	1,2,3,4
9	UTS	<u> </u>					L_		
10-11	Mahasiswa mampu Mensintesa mekanisme untuk tujuan gerak tertentu	a. Sintesa 2 posisi; b. Sintesa 3 posisi;	Kuliah online melalui e- learning PNC dan diskusi	4 x 50 menit	a. Merancang mekanisme untuk tujuan gerak tertentu; b. Terampil menggunakan alat gambar; c. ekerja dalam kelompok; d. Mempresentasi-kan hasil diskusi	a. Keber konse b. Kedal analis c. Berpi	ep laman sis	15%	1,3

			melalui group whatsapp							
12-13	Mahasiswa mampu mengetahui Elemen-elemen mekanisme	a. Nok (cam) b. Roda gigi c. Ulir daya	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	4 x 50 menit	a. b.	Membuat karya ilmiah; Mempresentasi-kan hasil kerja ilmiah;	a. b. c. d.	Kesesuaian kadian tulisan ilmiah Kebenaran konsep Berpikir kritis Partisipasi dalam	10%	1,3
14	Mahasiswa mampu menganalisa dinamika	a. Analisis gaya b. Analisis torsi	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	2 x 50 menit	a. b. c. d.	Melakukan analisis gaya statis dan dinamis Bekerja dalam kelompok; Terampil menggunakan alat gambar Membandingkameto de grafis dan analitis	a. b. c. d.	Kebenaran konsep Kedalaman analisis Berpikir kritis Partisipasi dalam kelompok	20%	1

5-16	Mahasiswa	a. Menyeimban gkan	Kuliah	4 x 50 menit	a.	Mengaplikasikan metode	a.	Kebenaran	10%	1
	mampu	massa tunggal	online			menyeimbangkan massa		konsep		
	Menyeimbangk	b. Permesinan	melalui e-			berputar dalam kehidupan	b.	Kedalaman		
		U. I CHIICSHIAH				sehari-hari .		analisis		ļ

	an Massa- massa		learning PNC dan diskusi melalui group whatsapp		b.	Membandingka metode grafis dan analitis	c. Berpikir kritis		
17	Mahasiswa mampu Dasar Getaran Mekanik	a. Pengantar getaran b. Meredam getaran	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	2 x 50 menit	a.	Mengetahui rumpun ilmu pengetahuan dan pengembangannya; Membandingkan perkembangan teknologi terbaru dengan teori	a. Kebenaran konsepb. Kedalaman analisisc. Berpikir kritis	10%	2,3
18	UAS								

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI POLITEKNIK NEGERI CILACAP PROGRAM STUDI SARJANA TERAPAN TEKNOLOGI REKAYASA MEKATRONIKA

Kode Dokumen

Jl. Dr. Soetomo No. 1, Sidakaya Cilacap, Jawa Tengah 53212

		RENCANA PEMBELAJARAN SEMESTER							
MATA KULIAH(MK)	KODE	RUMPUN MK	BOBOT (sks)		SEMESTER	Tgl Penyusunan			
Sistem Kendali 1		Mata Kuliah Inti Program Studi	T=2	P =0	3	07-05-2021			
OTORISASI/PENGESAHAN	Dosen Penger	nbang RPS	Koordinator KB	K	Ka PRODI				
			Hendi Purnata, M	I.T	Hendi Purnata, M.T				
		suf., S.ST., M.T.							
Capaian		yang Dibebankan pada MK	ala akaa malaania an di	hidana laabiianna					
Pembelajaran	CPL1(S9)	Menunjukkan sikap bertanggungjawa							
	CPL2(P1)	Menunjukkan sikap bertanggungjawa	ab atas pekerjaan di	bidang keahlianny	a secara mandırı.				
	CPL4(KU1)	Mampu menguasai konsep matemati yang diperlukan untuk analisis dan p skala besar							
	CPL5(KU3)	Mampu menerapkan pemikiran logis, spesifik di bidang keahliannya serta s				ekerjaan yang			
	CPL6(KK1)	Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan mengunggahnya dalam laman perguruan tingg							
	CPL7(KK3)	M Mampu menerapkan sains, techno rekayasa mekatronika untuk menyele	ology,engineering ar			yek teknologi			
	Capaian Pemb	elajaran Mata Kuliah (CPMK)							

	Mahasiswa mampu menguasai konsep dasar sistem kendali dan klasifikasinya (P1)						
CPMK2	Mahasiswa mampu menentukan pemodelan sebuah sistem kendali (P1, KU 1, KU 3, KK 1, KK 3)						
CPMK3	Mahasiswa menjelaskan jenis-jenis sistem kendali (P1, KK 1)						
CPMK4	Mahasiswa mampu merancang sebua sistem pengendalian dengan menerapkan kendali PID (S 9, P 1, KU 1, KU						
	3, KK 3))						
Kemampuan A	khir Tiap Tahapan Belajar (Sub-CPMK)						
Sub-CPMK1	Mahasiswa mengetahui pengertian dan klasifikasi sistem kendali. (C2, A3) (CPMK 1)						
Sub-CPMK2	Mahasiswa mampu mencari fungsi alih sistem dengan memanfaatkan transformasi laplace (C2, A3) (CPMK 2)						
Sub-CPMK3	Mahasiswa mampu menjelaskan tentang pemodelan sistem menggunakan Persamaan diferensial, transfer						
	function, dan diagram blok (C2, A3) (CPMK 2)						
Sub-CPMK4	Mahasiswa mampu menjelaskan tentang grafik aliran sinyal (C2, A3) (CPMK 2)						
Sub-CPMK5	Mahasiswa mampu menjelaskan tentang dasar sistem kendali proses (C2, A3) (CPMK 3)						
Sub-CPMK6	Mahasiswa mampu menjelaskan tentang kendali on/off (kendali 2 posisi) (C2, A3) (CPMK 3)						
Sub-CPMK7	Mahasiswa mampu menjelaskan tentang kendali Proposional, integral dan derivatif (PID) (C2, A3) (CPMK 4)						
Sub-CPMK8	Mahasiswa mampu menjelaskan tentang tuning kendali PID. (C2, A3) (CPMK 4)						
Dalam perkulia	ahan ini dibahas tentang pengertian dan klasifikasi sistem kendali, transformasi laplace dan fungsi alih						
sistem, diagran	n blok dan grafik aliran sinyal, dasar sistem kendali proses, kendali on/off (kendali 2 posisi), kendali Proposional,						
integral dan de	rivatif (PID), tuning kendali PID.						
Utama	1. Katsuhiko Ogata. 2002 "Modern Control Engineering.", Fourth Edition, Prentice Hall.						
	2. Philip J. Thomas, 1999 "Simulation of Industrial Processes for Control Engineers", Elsevier Science &						
	Technology Books						
Muhamad Yus	uf., S.ST., M.T.						
-							
	CPMK3 CPMK4 Kemampuan A Sub-CPMK1 Sub-CPMK2 Sub-CPMK3 Sub-CPMK4 Sub-CPMK5 Sub-CPMK6 Sub-CPMK7 Sub-CPMK8 Dalam perkulia sistem, diagrar integral dan de Utama						

Minagu	Kemampuan	Dahan Vaiian / Dahah	Metode	Walster	Dan colomon Dalaian	Vuitaria Danilaian dan		
Minggu Ke-	Akhir yang Diharapkan	Bahan Kajian / Pokok Bahasan	Pembelajara n	Waktu Pembelajaran	Pengalaman Belajar Mahasiswa	Kriteria Penilaian dan Indikator	Bobot	Acuan

1	Mahasiswa	☐ Pengertian sistem	Kuliah	Belajar materi	a.	Berdiskusi secara sinkron			1
	mengetahui	kendali	online	melalui e-learning:		melalui Whatsapp group,	5%	1	

	pengertian dan klasifikasi sistem kendali.	☐ Klasifikasi sistem kendali	melalui e- learning PNC dan diskusi melalui group whatsapp	1 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 1 x 50 menit	b. c.	Belajar mandiri dan mengerjakan tugas di e- learning dan/atau google classroom Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya.	* Dapat Menjelaskan pengertian dan klasifikasi sistem kendali.		
2,3,4	Mahasiswa mampu mencari fungsi alih sistem dengan memanfaatkan transformasi laplace	☐ Transformasi laplace ☐ Fungsi alih sistem * Inverse Transformasi Laplace	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	Belajar materi melalui e-learning: 1 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 1 x 50 menit	a. b. c. d.	Berdiskusi secara sinkron melalui Whatsapp group, Belajar mandiri dan mengerjakan tugas di elearning dan/atau google classroom Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya. Mencari fungsi alih dari sistem yang sederhana dengan menggunakan transformasi laplace	* Kemampuan dalam transformasi laplace * Mahasiswa dapat mencari fungsi alih sistem	20%	1
5,6,7	Mahasiswa mampu menjelaskan tentang pemodelan sistem menggunakan Persamaan	 Pemodelan dengan Persamaam differensial Pemodelan dengan transfer function Elemen diagram blok 	Kuliah online melalui e- learning PNC dan diskusi	Belajar materi melalui e-learning: 1 x 50 menit Belajar Mandiri dan Tugas	a. b.	Berdiskusi secara sinkron melalui Whatsapp group, Belajar mandiri dan mengerjakan tugas di e- learning dan/atau google classroom Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi	* Kemampuan menjelaskan dengan tepat dan jelas tentang elemen diagram blok * Mahasiswa dapat membuat pemodelan sistem dengan persamaan	20%	2

	diferensial, transfer function, dan diagram blok	Pemodelan dengan blok diagram	melalui group whatsapp	Terstruktur: 1 x 50 menit	mahasiswa secara mandiri terhadap capaian belajarnya.	differensialtransfer function, dan diagram blok		
8	Mahasiswa mampu menjelaskan materi satu sampai dengan empat	Mereview materi satu sampai dengan empat	Quiz, Tes Tulis,	Mengerjakan soal melalui e-learning: 2 x 50 menit	Mereview materi satu sampai dengan empat dan menyelesaikan soal-soal terkait materi tersebut.	* Kemampuan menjawab tes tertulis untuk materi pertama sampai dengan keempat	5%	1,2
9	UIS							
10,11	Mahasiswa mampu menjelaskan tentang grafik aliran sinyal	 Grafik Aliran Sinyal Fungsi alih dengan grafik aliran sinyal 	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	Belajar materi melalui e-learning: 1 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 1 x 50 menit	 a. Berdiskusi secara sinkron melalui Whatsapp group, b. Belajar mandiri dan mengerjakan tugas di elearning dan/atau google classroom c. Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya. 	* Mahasiswa dapat menjelaskan grafik aliran sinyal. *Mahasiswa dapat mencari fungsi alih dari diagram blok dengan menggunakan grafik aliran sinyal	15%	2

12,13	Mahasiswa mampu menjelaskan tentang dasar sistem kendali proses	☐ Temperature dan flow plant ☐ Level dan pressure plant	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	Belajar materi melalui e-learning: 1 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 1 x 50 menit	a. b. c. d.	Berdiskusi secara sinkron melalui Whatsapp group, Berdiskusi melalui Forum Diskusi melalui zoom meeting ataupun google meet, Belajar mandiri dan mengerjakan tugas di e- learning dan/atau google classroom Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya membuat makalah tentang Temperature, flow, Level dan pressure plant	* Kemampuan menjelaskan dengan tepat dan jelas tentang Temperature, flow, Level dan pressure plant	10%	2
14,15	Mahasiswa mampu menjelaskan tentang kendali on/off (kendali 2 posisi)	Prinsip kerja kendali on/off.	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	Belajar materi melalui e-learning: 1 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 1 x 50 menit	a. b. c.	Berdiskusi secara sinkron melalui Whatsapp group, Belajar mandiri dan mengerjakan tugas di e- learning dan/atau google classroom Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya Menjelaskan tentang Prinsip kerja kendali on/off)	* Kemampuan menjelaskan dengan tepat dan jelas Prinsip kerja kendali on/off)	10%	1
16	Mahasiswa mampu menjelaskan tentang kendali Proposional,	 Kendali Proposional Kendali Integral Kendali Derivatif Kendali PI 	Kuliah online melalui e- learning PNC	Belajar materi melalui e-learning: 1 x 50 menit	a. b.	Berdiskusi secara sinkron melalui Whatsapp group, Berdiskusi melalui Forum Diskusi melalui zoom meeting ataupun google meet,	* Kemampuan menjelaskan dengan tepat dan jelas kendali Proposional, integral dan derivatif (PID)	10%	1

		group whatsapp	dan Tugas Terstruktur: 1 x 50 menit	d. e.	learning dan/atau google classroom Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya membuat makalah tentang kendali Proposional, integral dan derivatif (PID)			
17 Mahasiswa mampu zi menjelaskan tentang tuning kendali PID.	Tuning metode ziegler nicolhz	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	Belajar materi melalui e-learning: 1 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 1 x 50 menit	a. b. c. d.	Berdiskusi secara sinkron melalui Whatsapp group, Berdiskusi melalui Forum Diskusi melalui zoom meeting ataupun google meet, Belajar mandiri dan mengerjakan tugas di e- learning dan/atau google classroom Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya Mencari parameter Kp, Ki dan Kd dengan metode ziegler nicolhz	* Kemampuan Mencari parameter Kp, Ki dan Kd dengan metode ziegler nicolhz dan ciancone	5%	1

Kode Dokumen

		RENCANA PEMBI	ELAJARAN SEMESTE	ER							
MATA KULIAH(MK)	KODE	RUMPUN MK	BOBOT (sks)		SEM	Tgl Penyusunan					
Gambar Teknik		Mata Kuliah Prodi	T=0	P =2	2						
OTORISASI/PENGESA	Dosen Pengemba	ang RPS	Koordinator RMK	<u> </u>	Ka PRODI	DI					
HAN	Mohammad Nurh	illal, S.T., M.Pd., M.T	Mohammad Nurhillal, S.T., M	.Pd., M.T	Hendi Purnata, M.T						
Capaian	CPL - PRODI	CPL – PRODI yang Dibebankan pada MK									
Pembelajaran	CPL1(S9)	Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahliannya secara mandiri.									
	CPL2(P5)	Kemampuan menerapkan pengetahuan keluasan tentang perkembangan terbaru yang mencakup sejumlah topik kerekayasaan mekatronika									
	CPL3(KK2)	Mampu merancang proyek rekayasa mekatronika dengan menggunakan perangkat desain untuk menghasilkan rancangan sistem mekatronika dalam bidang otomasi dan robotik yang mempertimbangkan faktor ekonomis, standar regulasi, ergonomis pada proses manufaktur									
	CPL4 (KK3)	Mampu merancang proyek teknologi rekayasa mekatronika dengan cara analisa rangkaian elektronika, mekanik, informatik dan kendali dalam lingkup jasa dan produk									
	Capaian Pembe	elajaran Mata Kuliah (CPMK)									
	CPMK1	Menyebutkan aturan gambar PCB / PRT (CPL1, CPL2)									
	CPMK2	Mampu membuat desain rangkaia	nn PCB/PRT di software CAD (CPL3, CPL4)							
	CPMK3	Menjelaskan langkah pembuatan	desain benda 2D di software CA	AD (CPL1, CPL2	2, CPL4);						

	CPMK4	Menjelaskan langkah pembuatan desain benda 3D di software CAD (CPL1, CPL2, CPL4);							
	Kemampuan A	khir Tiap Tahapan Belajar (Sub-CPMK)							
	Sub-CPMK1	Mahasiswa mampu menyebutkan aturan gambar PCB / PRT (S9,P5)(CPMK1)							
	Sub-CPMK2	Mahasiswa mampu membuat desain rangkaian PCB/PRT di software CAD (S9,P5)(CPMK1)							
	Sub-CPMK3	Mahasiswa mampu menjelaskan langkah pembuatan desain benda 2D di software CAD (S9,P5)(CPMK1)							
	Sub-CPMK4	Mahasiswa mampu menjelaskan langkah pembuatan desain benda 3D di software CAD (S9,P5)(CPMK1);							
Deskripsi Singkat MK		mbar Teknik 2 akan membekali mahasiswa dengan pengetahuan membuat perancangan gambar PCB/PRT menggunakan							
		e CAD seperti Proteus dan Eagle, dan juga pembuatan desain ruang atau bidang 2D dan 3D melalui software CAD							
Bahan Kajian : Materi	_	Pengetahuan tentang aturan aturan gambar PCB/PRT							
pembelajaran	_	tentang mampu membuat desain rangkaian PCB/PRT di software CAD							
	3. Pengetahuan	tentang pembuatan desain ruang atau bidang 2D melalui software CAD							
	4. Pengetahuan	tentang pembuatan desain ruang atau bidang 3D melalui software CAD							
Pustaka	Utama	1. PUIL 2011							
		2. JOBSHEET PERANCANGAN INSTALASI BANGUNAN GEDUNG							
	Pendukung	1. Cole, Jensen, Cl dan Helsel, JD. 1985. Engineering Drawing and Design. Gregg Division McGraw-Hill Book							
		Company							
		2. Modul Software Proteus JTE PNC							
		3. Modul Software Eagle JTE PNC							
		4. Modul Software AutoCAD JTE PNC							

Media Pembelajaran	Perangkat	Windows, Ms. Office, Proteus, Eagle, Autocad					
	Lunak						
	Perangkat	Notebook, LCD Proyektor, Komputer/Laptop					
	Keras	Notebook, LeD Proyektor, Komputer/Laptop					
Dosen Pengampu							
	D 1.11 C 1	m 1 3					
Mt Kuliah Syarat	Praktikum Gamb	ktikum Gambar Teknik					

Minggu Ke-	Kemampuan Akhir yang Diharapkan	Bahan Kajian / Pokok Bahasan	Metode Pembelajara n	Waktu Pembelajaran	Pengalaman Belajar Mahasiswa	Kriteria Penilaian dan Indikator	Bobot	Acuan
1-2	Mahasiswa mampu menyebutkan aturan aturan gambar PCB / PRT	Mahasiswa mampu menyebutkan aturan aturan gambar PCB / PRT	Kuliah online melalui e- learning PNC dan Praktikum sesuai dengan Jobsheet	6 JP	Menjelaskan aturan aturan gambar PCB / PRT	Ketepatan menjelaska n tentang aturan aturan gambar PCB / PRT;	15%	2,3
3-7	Mahasiswa mampu membuat desain	Mahasiswa mampu membuat desain	Kuliah online melalui e-	5 x 6 JP	Mendesain rangkaian skematik gambar PCB/PRT di Proteus Mendesain rangkaian layout gambar PCB/PRT di Proteus	Ketepatan mendesain rangkaian skematik gambar PCB/PRT di Proteus	30%	1,3,4

	rangkaian PCB/PRT di software CAD seperti Proteus dan Eagle	rangkaian PCB/PRT di software CAD	learning PNC dan Praktikum sesuai dengan Jobsheet		skema di Eag Mende	esain rangkaian tik gambar PCB/PRT le esain rangkaian layout r PCB/PRT di Eagle	Ketepatan mendesain rangkaian layout gambar PCB/PRT di Proteus Ketepatan mendesain rangkaian skematik gambar PCB/PRT di Eagle Ketepatan rangkaian layout gambar PCB/PRT di Eagle				
8	UTS										
9 -13	Mahasiswa mampu menjelaskan langkah pembuatan desain benda 2D di software CAD	Mahasiswa mampu menjelaskan langkah pembuatan desain benda 2D di software CAD	Kuliah online melalui e- learning PNC dan Praktikum sesuai dengan Jobsheet	5 x 6JP	a. b. c. d.	Menganalisa aspek kinematik suatu mekanisme; Terampil menggunakan alat gambar; Menganalisis dengan berbantuan software komputer; Bekerja dalam kelompok; Mempresentasi-kan hasil diskusi	Ketepatan mengguna kan toolbar area kerja gambar 2D Kepresisian ukuran dan skala gambar 2D Kemampuan mengubah gambar 2D menjadi 3D	15%	1,2,3,4		
14-17	Menjelaskan langkah pembuatan desain benda 3D di	Pengetahuan tentang pembuatan desain ruang atau	Kuliah online melalui e- learning PNC	4 x 6JP	a. b.	Ketepatan menggunakan toolbar area kerja gambar 3D Kepresisian ukuran dan skala gambar 3D	Ketepatan mengguna kan toolbar area kerja gambar 3D Kepresisian ukuran dan skala gambar 3D	15%	1,3		

software CAD	bidang 3D melalui software CAD	dan Praktikum sesuai dengan Jobsheet	1	Melakukan inovasi membuat prototipe alat / bidang 3D	Kemampuan berinovas membuat prototipe alat / bidang 3D		
-----------------	-----------------------------------	--------------------------------------	---	--	--	--	--

Kode Dokumen

		RENCANA PEMBELAJAR	RAN SEMESTER						
MATA KULIAH(MK)	KODE	RUMPUN MK	BOBOT (sks)		SEMESTER	Tgl Penyusunan			
Kendali Cerdas		Mata Kuliah Inti Program Studi	T=2	P=0	6				
OTORISASI/PENGESAHAN	Dosen Pengen	nbang RPS	Koordinator KBK Ka PRODI						
			II I'D . M	T. T.	II I'D ()	4 T			
	Arif Ainur Raf	iq, S.T., M.T., M.Sc	Hendi Purnata, M.T		Hendi Purnata, M.T				
Capaian		yang Dibebankan pada MK							
Pembelajaran	CPL1(S9) Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahliannya secara mandiri.								
	CPL2(P1)	Menguasai konsep matematika tekni	k, kinematika, elekt	ronika, manufaktur,	dan perancangan	rekayasa yang			
		diperlukan untuk analisis dan peranc	angan komponen, b	agian, dan sistem m	anufaktur dari ska	la kecil hingga			
		skala besar							
	CPL4(KU1)	Mampu menerapkan pemikiran logi		·		pekerjaan yang			
	CDV - (777 10)	spesifik di bidang keahliannya serta							
	CPL5(KU3)	Mampu mengkaji kasus penerapan il	1 0			•			
		humaniora sesuai dengan bidang kea							
		karya seni, menyusun hasil kajiannya		as kerja, spesifikasi	desain, atau esai s	eni, dan			
	CDI 6(VV1)	mengunggahnya dalam laman perguruan tingg Mampu menerapkan sains, technology, engineering and math (STEM) ke dalam bentuk proyek rekayasa							
	CPL6(KK1)	teknologi mekatronika	gy, engineering ana	main (STENT) ke ua	aram bentuk proye	k rekayasa			
	CPL7(KK7)	Mampu menerapkan sistem otomasi	dengan metode sist	em kendali konvesi	onal dan modern	untuk meghasilkan			
		sistem yang cerdas, adaptif dan robu	•	om kondan konvesi	onar dan modern	umuk megnasiikan			
	Capaian Pembelajaran Mata Kuliah (CPMK)								

	CPMK1	Mahasiswa Mampu memahami konsep system kendali cerdas dalam system rekayasa mekatronika						
	CPMK2	Mahasiswa mampu menerapkan metode system kendali cerdas dengan menerapkan eksperimen dan						
		berdasarakan pemikiran kritis						
	CPMK3	Mahasiswa dapat menerapkan metode dan menggabungkan metode cerdas dengan metode konvesional di system						
		mrekayasa Mekatronika						
	Kemampuan A	Akhir Tiap Tahapan Belajar (Sub-CPMK)						
	Sub-CPMK1	Mahasiswa mampu memahami konsep sistem kendali konvensional dan cerdas						
	Sub-CPMK2	Mahasiswa mampu memahami konsep sistem kendali cerdas dan aplikasinya						
	Sub-CPMK3	Mahasiswa mampu memahami konsep sistem kendali cerdas berbasis Logika Fuzzy						
	Sub-CPMK4	Mahasiswa mampu memahami konsep sistem kendali cerdas berbasis Jaringan Syaraf Tiruan						
	Sub-CPMK5	Mahasiswa mampu memahami konsep sistem kendali cerdas berbasis Algoritma Genetik						
	Sub-CPMK6	Mahasiswa mampu memahami konsep sistem kendali cerdas berbasis Particle Swarm Optimization						
	Sub-CPMK7	Mahasiswa mampu memahami konsep sistem kendali cerdas hybrid						
Deskripsi Singkat MK	dan mengemba dan efisien. Ko	stem Kendali Cerdas disusun untuk mengembangkan w awasan dan kemampuan mahasiswa agar mampu merancang angkan sistem kendali untuk mesin-mesin listrik agar proses maupun pengendalian dapat berjalan secara optimal onsep sistem kendali cerdas berbasis logika fuzzy, Jaringan Sy araf Tiruan, Algoritma Genetik, dan Particle Swarm diterapkan untuk berbagai sistem yang relevan di bidang mekatronika.						
Pustaka	Utama	 D. Driankov , H. Hellendoorn, and M. Reinfrank. 1993. An Introduction to Fuzzy Control. Springer-Verlag, Berlin, Heidelberg. Mohammad Jamshidi, Nader Vadiee, and Timothy J. Ross (Eds.). 1993. Fuzzy Logic and Control: Softw are and Hardw are Applications. Prentice-Hall, Inc., Upper Saddle Riv er, NJ, USA. Chin-Teng Lin and C. S. George Lee. 1996. Neural Fuzzy Sy stems: A Neuro-Fuzzy Sy nergism to Intelligent Sy stems. Prentice-Hall, Inc., Upper Saddle Riv er, NJ, USA. Jay A. Farrell and Marios M. Poly carpou. 2006. Adaptiv e Approximation Based Control: Unify ing Neural, Fuzzy and Traditional Adaptiv e Approx imation Approaches (Adaptive and Learning Sy stems for Signal Processing, Communications and Control Series). Wiley -Interscience, New York, NY, USA. 						
Dosen Pengampu	-							
Mt Kuliah Syarat	-							

Minggu Ke-	Kemampuan Akhir yang Diharapkan	Bahan Kajian / Pokok Bahasan	Metode Pembelajara n	Waktu Pembelajaran	Pengalaman Belajar Mahasiswa	Kriteria Penilaian dan Indikator	Bobot	Acuan
1-2	Mahasisw a mampu memahami konsep sistem kendali konv ensional dan cerdas	Sistem Kendali Konv ensional Sistem Kendali Cerdas	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	4 x 50 Menit	 a. Berdiskusi secara sinkron melalui Whatsapp group, b. Belajar mandiri dan mengerjakan tugas di elearning dan/atau google classroom c. Mengerjakan tugas dan Latihan soal yang juga merupakan evaluasi mahasiswa secara mandiri terhadap capaian belajarnya. 	a. Kemampuan menjelaskan Antusiasme dan keaktifan bertany a · Kelengkapan dan ketepatan menjaw ab soal Keaktifan berdiskusi Keterampilan dan kebenaran analisis	10%	2,3
3-5	Mahasisw a mampu memahami konsep sistem kendali cerdas dan aplikasiny a	Karakteristik sistem kendali cerdas Komponen sistem kendali cerdas	Kuliah online melalui e- learning PNC dan diskusi	Belajar materi melalui e-learning: 2 x 50 menit Belajar Mandiri dan Tugas	 a. Menidentifikasi jenis- jenis link, sambungan dan mekanisme; b. Memiliki gambaran mekanisme untuk tujuan gerak tertentu; 	Kemampuan menjelaskan Antusiasme dan keaktifan bertany a Kelengkapan dan ketepatan menjaw ab soal	20%	1,3,4

	Aplikasi sistem melalui group whatsap	Terstruktur: 2 x 50 menit		Keaktifan berdiskusiKeterampilan dan kebenaran analisis		
--	---	---------------------------	--	--	--	--

6-8	Mahasisw a mampu memahami konsep sistem kendali cerdas berbasis Logika Fuzzy	Konsep himpunan tegas dan himpunan fuzzy Karakteristik sistem fuzzy · Fuzzy Logic Controller	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	Belajar materi melalui e-learning: 2 x 50 menit Belajar Mandiri dan Tugas Terstruktur: 2 x 50 menit	a. b.	Mengidentifikasi jenis- jenis gerak; Mendemonstrasikan gerak utuh suatu mekanisme;	· Kemampuan menjelaskan · Antusiasme dan keaktifan bertany a · Kelengkapan dan ketepatan menjaw ab soal · Keaktifan berdiskusi · Ketrampilan dan kebenaran analisis	10%	1,2,3,4
10-11	Mahasisw a mampu memahami konsep sistem kendali cerdas berbasis Jaringan Sy araf Tiruan	 Konsep dasar sistem Jaringan Sy araf Tiruan Fungsi aktiv asi Model-model sistem kendali Jaringan Sy araf Tiruan 	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	4 x 50 menit		 a. Menganalisa aspek kinematik suatu mekanisme; b. Terampil menggunakan alat gambar; c. Menganalisis dengan berbantuan software komputer; d. Bekerja dalam kelompok; e. Mempresentasi-kan hasil diskusi 	Kemampuan menjelaskan Antusiasme dan keaktifan bertany a Kelengkapan dan ketepatan menjaw ab soal Keaktifan berdiskusi Ketrampilan dan kebenaran analisis	15%	1,2,3,4

12-13	Mahasisw a mampu memahami konsep sistem kendali cerdas berbasis Algoritma Genetik	Karakteristik sistem kendali algoritma genetik Komponen sistem kendali algoritma genetik Model-model sistem kendali algoritma genetik	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	4 x 50 menit		 a. Merancang mekanisme untuk tujuan gerak tertentu; b. Terampil menggunakan alat gambar; c. ekerja dalam kelompok; d. Mempresentasi-kan hasil diskusi 	Kemampuan menjelaskan Antusiasme dan keaktifan bertany a Kelengkapan dan ketepatan menjaw ab soal Keaktifan berdiskusi Ketrampilan dan kebenaran analisis	15%	1,3
14-15	Mahasisw a mampu memahami konsep sistem kendali cerdas berbasis Particle Sw arm Optimization	·Karakteristik sistem kendali Particle Sw arm Optimization ·Komponen sistem kendali Particle Sw arm Optimization ·Model-model sistem kendali Particle Sw arm Optimization	Kuliah online melalui e- learning PNC dan diskusi melalui group whatsapp	4 x 50 menit	a. b.	Membuat karya ilmiah; Mempresentasi-kan hasil kerja ilmiah;	Kemampuan menjelaskan Antusiasme dan keaktifan bertany a Kelengkapan dan ketepatan menjaw ab soal Keaktifan berdiskusi Ketrampilan dan kebenaran analisis	10%	1,3
16-17	Mahasisw a mampu memahami konsep sistem kendali cerdas hybrid	· Contoh-contoh sistem kendali cerdas dari gabungan dua atau lebih algoritma	Kuliah online melalui e- learning PNC dan diskusi	2 x 50 menit	a. b. c. d.	Melakukan analisis gaya statis dan dinamis Bekerja dalam kelompok; Terampil menggunakan alat gambar Membandingkameto de grafis dan analitis	 Kemampuan menjelaskan Antusiasme dan keaktifan bertany a Kelengkapan dan ketepatan menjaw ab soal 	20%	1

Ī			melalui group whatsapp		 Keaktifan berdiskusi Ketrampilan dan	
ļ	10	TIAG	The state of the s		kebenaran analisis	
	18	UAS				

Kode Dokumen

		RENCANA PEMBELAJAR	AN SEMESTER							
MATA KULIAH(MK)	KODE	RUMPUN MK	BOBOT (sks)		SEMESTER	Tgl Penyusunan				
Praktek Pemrograman		Mata Kuliah Inti Program Studi	T=2	P=0	6					
OTORISASI/PENGESAHAN	Dosen Penger	nbang RPS	Koordinator KB	K	Ka PRODI					
		fiq, S.T., M.T., M.Sc	Hendi Purnata, M.T Muhamad Yusuf, S.S							
Capaian		yang Dibebankan pada MK								
Pembelajaran	CPL1(S9)	Menunjukkan sikap bertanggungjawa	ab atas pekerjaan di	bidang keahliannya	secara mandiri.					
	CPL2(P1)	Menguasai konsep matematika teknil diperlukan untuk analisis dan peranca skala besar				• •				
	CPL4(KU1)	Mampu menerapkan pemikiran logis spesifik di bidang keahliannya serta s				pekerjaan yang				
	CPL5(KU3)	Mampu mengkaji kasus penerapan il humaniora sesuai dengan bidang kea karya seni, menyusun hasil kajiannya mengunggahnya dalam laman pergui	hliannya dalam rang a dalam bentuk kerta	gka menghasilkan p	rototype, prosedur	baku, desain atau				
	CPL6(KK1)									
	CPL7(KK7)	Mampu mendesain/merancang dan n meliputi sistem mekanikal, sistem ele			orium pada sistem i	mekatronika				
	Capaian Pemb	elajaran Mata Kuliah (CPMK)								

	CPMK1	Mengetahui konsep algoritma dan penerapannya ke dalam kehidupan sehari-hari. (CPL-1, CPL-2, CPL-3, CPL-4, CPL-5, CPL-8)
	CPMK2	Mampu menerapkan matematika, sains, dan prinsip rekayasa untuk menyelesaikan masalah rekayasa kompleks pada sistem tenaga listrik, sistem kendali, atau sistem elektronika. (CPL-2, CPL-3, CPL-4, CPL-5, CPL-8)
	СРМК3	Menguasai pengetahuan tentang teknik komunikasi dan perkembangan teknologi terbaru dan terkini di bidang sistem tenaga listrik, sistem kendali, atau sistem elektronika. (CPL-5, CPL-6, CPL-7)
	Kemampuan A	Akhir Tiap Tahapan Belajar (Sub-CPMK)
	Sub-CPMK1	Memahami inti perkuliahan secara global (CPMK-1)
	Sub-CPMK2	Memahami pengertian-pengertian dasar, arti penting dan notasi algoritma. (CPMK-1, CPMK-2)
	Sub-CPMK3	Menerapkan konsep nama, tipe, ekspresi, dan nilai ke dalam algoritma dan program input-output. (CPMK-2, CPMK-3)
	Sub-CPMK4	Memahami pembuatan algoritma dan menerjemahkan algoritma ke dalam bahasa pemrograman C++ (CPMK-2, CPMK-3, CPMK-4)
	Sub-CPMK5	Menerapkan algoritma runtunan (sequence) ke dalam flowchart, pseudocode, dan program C++ (CPMK-2, CPMK-3, CPMK-4)
	Sub-CPMK6	Menerapkan algoritma pemilihan ke dalam flowchart, pseudocode, dan program C++ (CPMK-2, CPMK-3, CPMK-4)
	Sub-CPMK7	Menerapkan algoritma pengulangan ke dalam flowchart, pseudocode, dan program C++ (CPMK-2, CPMK-3, CPMK-4)
Deskripsi Singkat MK	Politeknik Neg pengantar alg input/output d pengurutan. P	goritma dan pemrograman diberikan selama satu semester pada semester ganjil di Program Studi Teknik Elektronika geri Cilacap. Mata kuliah ini memberikan gambaran tentang dasar—dasar algoritma dan pemrograman yang meliputi: oritma dan pemrograman, konstruksi dasar algoritma, nama, tipe, expresi, dan nilai pada algoritma, program an pemrograman dengan c++, runtunan, pemilihan, pengulangan, prosedur, fungsi, larik, matriks, pencarian, dan erkuliahan akan memberikan penjelasan kepada mahasiswa tentang konsep—konsep algoritma dan pemrograman, erancang algoritma berdasarkan konsep—konsep yang ada kemudian mengimplementasikannya ke dalam bahasa

Pustaka	Utama	 Rinaldi Munir, Algoritma dan Pemrograman dalam Bahasa Pascal, C, dan C++, Penerbit Informatika, Bandung, 2016. Abdul Kadir, Algoritma & Pemrograman Menggunakan C & C++, penerbit Andi Publisher, Yogyakarta, 2012 Michael T. Goodrich, Data Structures and Algorithms in C++, John Wiley & Sons, Inc, United States of America, 2011
Dosen Pengampu	Arif Ainur Raf	iq, S.T., M.T., M.Sc
Mt Kuliah Syarat	-	

Mingg u Ke-	Kemampuan Akhir yang Diharapkan	Bahan kajian / Pokok Bahasan	Metode Pembelajaran	Waktu Pembelajaran	Pengalaman Belajar Mahasiswa	Kriteria Penilaian dan Indikator	Bobot	Acuan
1	Mahasiswa dapat melakukan instalasi perangkat lunak compiler bahasa C Mahasiswa mampu memahami penggunaan menubar, toolbar pada perangkat lunak Mahasiswa mampu menyimpan, mengcompile, dan menjalankan program.	Perangkat lunak DEV- C++	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	 Pertemuan Sinkron melalui Zoom Meeting (2 x 50 menit) Pertemuan asinkron melalui google classroom/elearn ing PNC(2 x 60 menit) Melaksanakan instalasi (2 x 60 menit) 	 a. Berdiskusi secara sinkron melalui Zoom Meeting/Group Whatsapp b. Menyimak video tutorial instalasi perangkat lunak c. Menyimak video tutorial penjelasan perangkat lunak, menyimpan, mengcompile dan menjalankan program d. Mengerjakan tugas instalasi perangkat lunak. 	Kemampuan instalasi perangkat lunak, dan kemampuan/ke tepatan komunikasi	0%	1

2	Mahasiswa memahami fungsi toolbar pada perangkat lunak compiler bahasa C Mahasiswa dapat menjalankan perangkat lunak bahasa C Mahasiswa dapat memeriksa, menganalisa dan memperbaiki kesalahan.	•	Sejarah Bahasa C Struktur bahasa C	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	•	Pertemuan asinkron melalui google classroom/elearn ing PNC (2 x 50 menit) Menjalankan program, melakukan pemeriksaan dan memperbaiki program (2 x 60 menit) Membuat Laporan (2 x 60 menit)	a. b.	Berdiskusi secara sinkron melalui Whatsapp group, Menyimak video penjelasan struktur bahasa C dan trouble shootingnya Belajar mandiri dan mengerjakan tugas di e- learning/google classroom	Ketepatan menyelesaikan tugas, ketepatan menyampaikan dalam laporan.	5%	2,3,4
3	Mahasiswa dapat menggunakan variabel sesuai tipe data pada pemrograman Bahasa C	•	Tipe data dasar Variabel dan Konstanta Operator	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	•	Pertemuan asinkron melalui google classroom/elearn ing PNC (2 x 50 menit) Mengerjakan job ke-1, job ke-2, dan job ke-3 (2 x 60 menit) Membuat Laporan (2 x 60 menit)	a. b. c.	Berdiskusi secara sinkron melalui Whatsapp group, Menyimak video penjelasan tipe data, variabel dan operator Belajar mandiri dan mengerjakan tugas di elearning/google classroom Menuliskan kegiatan dalam laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	10%	2,3,5

4	Mahasiswa dapat menggunakan variabel sesuai tipe data pada pemrograman Bahasa C	•	Tipe data dasar Variabel dan Konstanta Operator	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	•	Pertemuan sinkron melalui Zoom Meeting (2 x 50 menit) Mengerjakan job ke-4 (2 x 60 menit) Membuat Laporan (2 x 60 menit)	a. b.	Berdiskusi secara sinkron melalui Zoom Meeting/Group Whatsapp Mengerjakan tugas di elearning PNC/google classroom. Menuliskan kegiatan dalam laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	10%	2,3,5
5	Mahasiswa dapat menggunakan fungsi input dalam pemrograman bahasa C	•	Fungsi Input Bahasa C	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	•	Pertemuan asinkron melalui google classroom/elearn ing PNC (2 x 50 menit) Mengerjakan job ke-5, job ke-6, dan job ke-7 (2 x 60 menit)	a. b. c.	Berdiskusi secara sinkron melalui Whatsapp group, Menyimak video penjelasan fungsi input pada Bahasa C Belajar mandiri dan mengerjakan tugas di elearning/google classroom Menuliskan kegiatan dalam laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	5%	2,3,5

				•	Membuat Laporan (2 x 60 menit)					
6	Mahasiswa dapat menggunakan fungsi input dalam pemrograman bahasa C	Fungsi Input Bahasa C	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	•	Pertemuan sinkron melalui Zoom Meeting (2 x 50 menit) Mengerjakan job ke-8 dan Job ke-9 (2 x 60 menit) Membuat Laporan (2 x 60 menit)	a. b.	Berdiskusi secara sinkron melalui Zoom Meeting/Group Whatsapp Mengerjakan tugas di elearning PNC/google classroom. Menuliskan kegiatan dalam laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	5%	2,3,4,5

7	Mahasiswa dapat menggunakan fungsi input dalam pemrograman bahasa C	• Fungsi Input Bahasa C	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	•	Pertemuan sinkron melalui Zoom Meeting (2 x 50 menit) Mengerjakan job ke-10 dan job ke-11 (2 x 60 menit) Membuat Laporan (2 x 60 menit)	a. b.	Berdiskusi secara sinkron melalui Zoom Meeting/Group Whatsapp Mengerjakan tugas di elearning PNC/google classroom. Menuliskan kegiatan dalam laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	5%	2,3,4,5
9	• Mahasiswa dapat menerapkan	Percabangan TunggalPercabangan Ganda	Kuliah online melalui	•	Pertemuan asinkron melalui	a.	Berdiskusi secara sinkron melalui	Ketepatan menyelesaikan	5%	2,3,4,5
	bentuk-bentuk percabangan dalam bahasa C	Percabangan Lebih dari 2	Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	•	google classroom/elearn ing PNC (2 x 50 menit) Mengerjakan job ke-12, job ke-13, job ke-14 dan job ke-15 (2 x 60 menit)	b. c.	Whatsapp group, Menyimak video penjelasan algoritma percabangan pada Bahasa C Belajar mandiri dan mengerjakan tugas di e- learning/google classroom Menuliskan kegiatan dalam laporan.	tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.		
				•	Membuat Laporan (2 x 60 menit)					
10	Mahasiswa dapat menerapkan bentuk-bentuk percabangan dalam bahasa C	 Percabangan Tunggal Percabangan Ganda Percabangan Lebih dari 2 	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	•	Pertemuan sinkron melalui Zoom Meeting (2 x 50 menit) Mengerjakan job ke-16, job ke-17 dan job ke-18 (2 x 60 menit) Membuat Laporan (2 x 60 menit)	a. b.	Berdiskusi secara sinkron melalui Zoom Meeting/Group Whatsapp Mengerjakan tugas di elearning PNC/google classroom. Menuliskan kegiatan dalam laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	10%	2,3,4

11	Mahasiswa dapat menerapkan bentuk-bentuk percabangan dalam bahasa C	 Percabangan Tunggal Percabangan Ganda Percabangan Lebih dari 2 	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	 Pertemuan sinkron melalui Zoom Meeting (2 x 50 menit) Mengerjakan job ke-19, job ke-20 dan job ke-21 (2 x 60 menit) Membuat Laporan (2 x 60 menit) 	melalu Meetin b. Menge elearni PNC/g classro c. Menuli	oogle	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	10%	2,3,4
12	Mahasiswa dapat menerapkan bentuk-bentuk perulangan dalam bahasa C	 Perulangan for Perulangan Do While Perulangan While 	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	 Pertemuan asinkron melalui google classroom/elearn ing PNC (2 x 50 menit) Mengerjakan job ke-22 dan job ke-23 (2 x 60 menit) 	sinkror Whatsa b. Menyin penjela perular c. Belajan menge learnin d. Menuli	kusi secara n melalui app group, mak video asan algoritma ngan pada Bahasa C r mandiri dan arjakan tugas di e- ng/google classroom iskan kegiatan laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	5%	2,3,4,5
				• Membuat Laporan (2 x 60 menit)					
13	Mahasiswa dapat menerapkan bentuk-bentuk perulangan dalam bahasa C	 Perulangan for Perulangan Do While Perulangan While 	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	 Pertemuan sinkron melalui Zoom Meeting (2 x 50 menit) Mengerjakan job ke-24 dan job ke-25 (2 x 60 menit) Membuat Laporan (2 x 60 menit) 	b. Meetin PNC/g classro c. Menul	google	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	10%	2,3,4

14	Mahasiswa dapat menerapkan bentuk-bentuk perulangan dalam bahasa C	 Perulangan for Perulangan Do While Perulangan While 	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	 Pertemuan sinkron melalui Zoom Meeting (2 x 50 menit) Mengerjakan job ke-26 dan job ke-27 (2 x 60 menit) Membuat Laporan (2 x 60 menit) 	a. b.	Berdiskusi secara sinkron melalui Zoom Meeting/Group Whatsapp Mengerjakan tugas di elearning PNC/google classroom. Menuliskan kegiatan dalam laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	10%	2,3,4
15	Mahasiswa dapat memahami pengertian array dan penggunaannya Mahasiswa dapat mengimplementasi kan array dalam program Mahasiswa dapat memahami pengertian fungsi dan prosedur	 Array satu dimensi Array multidimensi Perbedaan fungsi dan prosedur Penulisan fungsi dan prosedur 	Kuliah online melalui Google Classroom/ele arning PNC, Zoom Meeting dan Diskusi melalui Group Whatsapp.	 Pertemuan asinkron melalui google classroom/elearn ing PNC (2 x 50 menit) Mengerjakan job ke-22 dan job ke-23 (2 x 60 menit) Membuat Laporan (2 x 60 menit) 	a. b. c.	Berdiskusi secara sinkron melalui Whatsapp group, Menyimak video penjelasan array, fungsi dan prosedur pada Bahasa C Belajar mandiri dan mengerjakan tugas di elearning/google classroom Menuliskan kegiatan dalam laporan.	Ketepatan menyelesaikan tugas, ketepatan waktu penyelesaian, ketepatan menyampaikan dalam laporan.	10%	2,3,4,5

	Mahasiswa dapat mengimplementasi kan fungsi dan prosedur dalam program				
16	UAS				

Kode Dokumen

		RENCANA PEMBELAJAR	AN SEMESTER								
MATA KULIAH(MK)	KODE	RUMPUN MK	BOBOT (sks)		SEMESTER	Tgl Penyusunan					
Bengkel Manufaktur			T=2	P =0	1						
OTORISASI/PENGESAHAN	Dosen Penger	nbang RPS	Koordinator RM	iK .	Ka PRODI						
		iyanto, S.T.,M.T	Mohammad Nurh M.T	illal, S.T., M.Pd.,	Hendi Purnata, M	1 .T					
Capaian		CPL – PRODI yang Dibebankan pada MK									
Pembelajaran	CPL1(KU1)	Mampu menyelesaikan pekerjaan pad beragam metode yang sesuai dengan	~		dali dan menganali	sis data dengan					
	CPL2(KU2)	Mampu menyusun laporan hasil dan proses kerja secara akurat dan sahih serta mengomunikasikannya secara efektif kepada pihak lain yang membutuhkan.									
	CPL3(KK1)	Mampu menerapkan matematika teki									
		instruksi, pengoperasian, pengujian, pemeliharaan, troubleshooting dan perbaikan untuk menyelesaikan permasalahan bidang intrumentasi dan sistem kendali berdasarkan teorema yang bersesuaian.									
	Capaian Pembelajaran Mata Kuliah (CPMK)										
	CPMK1	Mampu menunjukkan keterampilan c	lasar permesinan de	ngan membuat ben	da kerja						
	CPMK2	Mampu melakukan pekerjaan membu benar	ubut, mengikir, mer	yekrap, membuat lı	ubang, mengefrais	dengan baik dan					
	СРМК3	Mampu melakukan pekerjaan mengg	erinda, menggergaj	i, mengelas dengan	baik dan benar						
	CPMK4	Mampu melakukan pembuatan lubang pada benda kerja									
	CPMK5	CPMK5 Mampu membuat casing peralatan elektronik dengan baik dan benar									
	Kemampuan A	Akhir Tiap Tahapan Belajar (Sub-CPM)	K)								
	Sub-CPMK1	Mampu menunjukkan keterampilan d	lasar permesinan de	ngan membuat ben	da kerja						

	Sub-CPMK2	Mampu melakukan pekerjaan membubut, mengikir, menyekrap, membuat lubang, mengefrais dengan baik dan			
		benar			
	Sub-CPMK3	Mampu melakukan pekerjaan menggerinda, menggergaji, mengelas dengan baik dan benar			
	Sub-CPMK4	Mampu melakukan pembuatan lubang pada benda kerja			
	Sub-CPMK5	Mampu membuat casing peralatan elektronik dengan baik dan benar			
Deskripsi Singkat MK	Dalam perkulia	ahan ini mahasiswa belajar praktek kegiatan perbengkelan mulai dari menyolder, mengambil timah, memotong			
	kabel, melapisi	kabel, memotong plat besi, menggerinda, dan melakukkan pengelasan dasar			
Pustaka	Utama	 Jobsheet Praktikum Bengkel Elektronika dan Mekanik 			
Dosen Pengampu	Sugeng Dwi Riyanto, S.T.,M.T				
Mt Kuliah Syarat	-				

Minggu Ke-	Kemampuan Akhir yang Diharapkan	Bahan Kajian / Pokok Bahasan	Metode Pembelajaran	Waktu Pembelajaran	Pengalaman Belajar Mahasiswa	Kriteria Penilaian dan Indikator	Bobot	Acuan
1, 2,3	Mahasiswa menujukkan keterampilan dasar permesinan dengan membuat benda kerja	 Membuat desain benda kerja Menggunakan mesin perbengkelan untuk membuat benda kerja 	Praktikum, Diskusi, Laporan	PB: 3x(3x50")	 Menggunakan mesin perbengkelan untuk membuat benda kerja. Menyusun Laporan 	 Keterampilan dasar permesinan dengan membuat benda kerja. Ketepatan dalam menyusun laporan 	15%	1
4,5,6	Mahasiswa Mampu melakukan pekerjaan membubut, mengikir, dengan baik dan benar	 Melakukan pekerjaan bubut melakukan pekerjaan mengikir 	Praktikum, Diskusi, Laporan	PB: 3x(3x50")	Keterampilan melakukan pekerjaan membubut, mengikir, dengan baik dan benar Menyusun Laporan	 Ketepatan melakukan pekerjaan membubut, mengikir dengan baik dan benar. Ketepatan dalam menyusun laporan 	20%	1

7,8	Mahasiswa Mampu melakukan pekerjaan menyekrap, mengefrais dengan baik dan benar	 melakukan pekerjaan menyekrap melakukan pekerjaan mengefrais 	Praktikum, Diskusi, Laporan	PB: 2x(3x50")	Keterampilan melakukan pekerjaan menyekrap, mengefrais dengan baik dan benar Menyusun Laporan	Ketepatan melakukan pekerjaan menyekrap, mengefrais dengan baik dan benar. Ketepatan dalam menyusun laporan	15%	1
9		1		UTS	1			· ·
10-14	Mahasiswa mampu melakukan pemotongan, penggerindaan dan pengelasan dengan baik dan benar.	 melakukan pemotongan melakukan penggerindaan melakukan pengelasan 	Praktikum, Diskusi, Laporan	PB: 4x(3x50")	Keterampilan melakukan pemotongan, penggerindaan dan pengelasan Menyusun Laporan	 Ketepatan melakukan pemotongan, penggerindaan dan pengelasan dengan baik dan benar. Ketepatan dalam menyusun laporan 	25%	1
15-16	Mahasiswa mampu melakukan pembuatan lubang pada benda kerja	melakukan pembuatan lubang pada benda kerja	Praktikum, Diskusi, Laporan	PB: 2x(3x50")	Keterampilan melakukan pembuatan lubang pada benda kerja Menyusun Laporan	 Ketepatan melakukan pembuatan lubang pada benda kerja dengan baik dan benar. Ketepatan dalam menyusun laporan 	15%	1
17	Mahasiswa mampu membuat casing peralatan elektronik	membuat casing peralatan elektronik dengan baik dan benar	Praktikum, Diskusi, Laporan	PB: 1x(3x50")	Keterampilan membuat casing peralatan elektronik Menyusun Laporan	Ketepatan membuat casing peralatan elektronik Menyusun Laporan	10%	1

	dengan baik				·
	dan benar				
18			UAS		

Kode Dokumen

		RENCANA PEMBELAJAR	AN SEMESTER								
MATA KULIAH(MK)	KODE	RUMPUN MK	BOBOT (sks)		SEMESTER	Tgl Penyusunan					
Praktek Pneumatik dan Hidrolik		Mata Kuliah Inti Program Studi	T=0	P =2	3						
OTORISASI/PENGESAHAN	Dosen Pengen	nbang RPS	Koordinator RM	ik .	Ka PRODI						
	Muhamad Yus		Hendi Purnata, M	.Т	Hendi Purnata, M.T						
Capaian	CPL – PRODI	CPL – PRODI yang Dibebankan pada MK									
Pembelajaran	CPL1(KK7)	Mampu memelihara sistem mekatron	ika meliputi sistem	mekanikal, sistem e	elektrikal dan sisten	n kontrol					
	CPL2(KK2)	Mampu menganalisis sistem mekatronika meliputi sistem mekanikal, sistem elektrikal dan sistem kontrol									
	CPL3(KK3)	Mampu mendesain/merancang dan melaksanakan eksperimen skala laboratorium pada sistem mekatronika meliputi sistem mekanikal, sistem elektrikal dan sistem kontrol									
	CPL4(KU3)	Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan mengunggahnya dalam laman perguruan tinggi									
	CPL5(KU4)	Mampu menyusun hasil kajian terseb mengunggahnya dalam laman pergui		tuk kertas kerja, spe	esifikasi desain, ata	u esai seni, dan					
	Capaian Pemb	elajaran Mata Kuliah (CPMK)									
	CPMK1	Mahasiswa melakukan perancangan	rangkaian kontrol m	enggunakan pneum	natik manual (KK 2	, KK3)					
	CPMK2	Mahasiswa melakukan implementasi (KU3, KU4, KK3)	rangkaian control n	nenggunakan pneun	natik manual dan el	ektropneumatik					

	CPMK3	Mahasiswa melakukan simulasinya pada proses sequensial (KK7, KK3)
	Kemampuan A	Akhir Tiap Tahapan Belajar (Sub-CPMK)
	Sub-CPMK1	Mahasiswa mampu mengoperasikan peralatan-peralatan pneumatik dengan memperhatikan kaidah K3 (C2, A3) (CPMK 1, CPMK 3)
	Sub-CPMK2	Mahasiswa mampu mengidentifikasi masalah pada proses kontrol sekuensial yang menggunakan peralatan pneumatik (C2, A3) (,CPMK 1, CPMK 2)
	Sub-CPMK3	Mahasiswa mampu merumuskan alternatif solusi permasalahan dalam bentuk gambar rangkaian kontrol pneumatik dan mensimulasikannya dengan software fluidsim (C2, A3) (CPMK1, CPMK 2)
	Sub-CPMK4	Mahasiswa mampu merancang dan merealisasikan rancangan menggunakan peralatan pneumatik manual dan elektropneumatik pada papan kerja secara efektif dan efisien (C2, A3) (CPMK 2, CPMK 3)
	Sub-CPMK5	Mahasiswa mampu menyusun laporan hasil praktikum secara akurat dan shahih (C2, A3) (CPMK 3)
Deskripsi Singkat MK	Mesin dan Kir kecepatan, per pergerakan ya	Mekanika dan Dinamika berbobot 2 sks bersifat wajib lulus. Materi perkuliahan meliputi Konsep Dasar Dinamika nematika, mekanisme dalam mesin dan elemen-elemennya, analisis kinematis dan dinamis yang meliputi analisis reepatan, gaya statis dan gaya dinamis, dan sintesa suatu mekanisme. Mahasiswa diharapkan dapat menganalisa ang ada dalam suatu mekanisme dan gaya yang ditimbulkannya dan atau mampu merancang mekanisme yang tuk suatu gerakan tertentu.
Pustaka	Utama	 Modul Praktikum Pneumatik Jilid 1, Politeknik Negeri Cilacap 2020 Modul Praktikum Pneumatik Jilid 2, Politeknik Negeri Cilacap 2020 Andrew A. Parr, Hydraulics and Pneumatiks, Elsevier Science & Technology Books, 1999 H. Meixner/R.Kobler, Maintenance of Pneumatik Equipment And System, Esslingen, Festo Didactic, 1988. Frank Ebel, Fundamentals of Pneumatiks - Collection of Transparencies, Festo Didactic GmbH & Co, Denkendorf, 2000. P. Croser, F. Ebel, Pneumatiks Basic Level, Festo-Didactic Esslingen, 2002
Dosen Pengampu	-	
Mt Kuliah Syarat	-	

Mingg ke	Kemampuan akhir yang diharapkan	Bahan kajian (pokok bahasan)	Metode pembelajaran	Waktu	Pengalaman belajar	Indikator/ kriteria Penilaian	Bobot Penilaian	Referen si
1	Mahasiswa mampu	Safety	1. Ceramah	1x(2x100')	1. Melakukan	1. Ketepatan menggunakan alat	6%	1,5,6
	mengoperasikan	Induction	2. Praktikum	1x(2x70')	praktikum	pendukung sistem pneumatik		
	peralatan dasar sistem	dan dasar-	3. Diskusi		2. Menyusun	seperti kompressor, selang		
	pneumatik manual	dasar	4. Laporan		laporan	udara dan papan kerja		
	dengan benar dengan	pneumatik				2. Ketepatan merangkai		

	memperhatikan K3					komponen-komponen pneumatik seperti air service unit, air distributor, silinder dan valve 3. Ketepatan memasang dan melepas selang udara pada komponen pneumatik 4. Kerapian menggunakan APD praktikum pneumatik seperti kacamata 5. Ketajaman analisis pada laporan praktikum 6. Kerapian sajian laporan praktikum		
2	Mahasiswa mampu membuat gambar dan mengoperasikan silinder kerja tunggal dan silinder kerja ganda	Pengaturan langkah silinder	1. Ceramah 2. Praktikum 3. Diskusi 4. Laporan	1x(2x100') 1x(2x70')	Melakukan praktikum Menyusun laporan	Ketepatan gambar rangkaian kontrol silinder kerja tunggal dan ganda dengan satu tombol input Kesesuaian antara gambar rangkaian kontrol dengan	6%	1,5,6

Minggu ke	Kemampuan akhir yang diharapkan	Bahan kajian (pokok bahasan)	Metode pembelajaran	Waktu	Pengalaman belajar	Indikator/ kriteria Penilaian	Bobot Penilaian	Referen si
3	Mahasiswa mampu menyusun rangkaian kontrol pneumatik menggunakan 2 valve dan 1 silinder	Rangkain kontrol pneumatik sederhana	1. Ceramah 2. Praktikum 3. Diskusi 4. Laporan	1x(2x100') 1x(2x70')	Melakukan praktikum Menyusun laporan	rangkaian yang dibuat pada papan kerja 3. Masing-masing komponen pada rangkaian dapat bekerja sesuai fungsinya 4. Ketajaman analisis pada laporan praktikum 5. Kerapian sajian laporan praktikum 1. Ketepatan gambar rangkaian kontrol silinder kerja ganda dengan dua tombol input 2. Kesesuaian antara gambar rangkaian kontrol dengan rangkaian yang dibuat pada papan kerja 3. Masing-masing komponen pada rangkaian dapat bekerja sesuai fungsinya 4. Ketajaman analisis pada laporan praktikum 5. Kerapian sajian laporan praktikum	6%	1,5,6
4	Mahasiswa mampu menyusun rangkaian kontrol otomatis memanfaatkan sensor	Pengontrolan otomatis	1. Ceramah 2. Praktikum 3. Diskusi 4. Laporan	1x(2x100') 1x(2x70')	Melakukan praktikum Menyusun laporan	Ketepatan pemilihan sensor yang digunakan Kerapian dan kesesuain gambar rangkaian kontrol yang akan digunakan	6%	1,5,6

Minggu ke	Kemampuan akhir yang diharapkan	Bahan kajian (pokok bahasan)	Metode pembelajaran	Waktu	Pengalaman belajar	Indikator/ kriteria Penilaian	Bobot Penilaian	Referen si
	roller pada pneumatik manual					 3. Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja 4. Ketajaman analisis pada laporan praktikum 5. Kerapian sajian laporan praktikum 		
5	Mahasiswa mampu merangkai katub OR dan AND menggunakan 2 buah tombol input	katub OR dan AND	1. Ceramah 2. Praktikum 3. Diskusi 4. Laporan	1x(2x100') 1x(2x70')	Melakukan praktikum Menyusun laporan	Ketepatan rangkaian kontrol silinder kerja ganda menggunakan katub OR atau AND dengan 2 buah tombol input Kerapian dan kesesuain gambar rangkaian kontrol yang akan digunakan Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja Ketajaman analisis pada laporan praktikum Kerapian sajian laporan praktikum	6%	1,5,6
6	Mahasiswa mampu mengkombinasikan katub AND dan OR untuk menyelesaikan masalah pada sistem sekuensial	Katub kombinasi AND dan OR	 Ceramah Praktikum Diskusi Laporan 	1x(2x100') 1x(2x70')	Melakukan praktikum Menyusun laporan	Ketepatan pemilihan katub dan sensor yang digunakan Kerapian dan kesesuain gambar rangkaian kontrol yang akan digunakan	6%	1,5,6

Minggu ke	Kemampuan akhir yang diharapkan	Bahan kajian (pokok bahasan)	Metode pembelajaran	Waktu	Pengalaman belajar	Indikator/ kriteria Penilaian	Bobot Penilaian	Referen si
						 Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja Ketajaman analisis pada laporan praktikum Kerapian sajian laporan praktikum 		
7	Mahasiswa mampu mengkombinasikan komponen input dan komponen proses sebagai rangkaian pengunci dengan output 1 slinder kerja ganda	Rangkaian pengunci	1. Ceramah 2. Praktikum 3. Diskusi 4. Laporan	1x(2x100') 1x(2x70')	 Melakukan praktikum Menyusun laporan 	 Ketepatan pemilihan katub dan sensor yang digunakan Kerapian dan kesesuain gambar rangkaian kontrol yang akan digunakan Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja Ketajaman analisis pada laporan praktikum Kerapian sajian laporan praktikum 	6%	1,5,6
8	Mahasiswa mampu merangkai dan mengkombinasikan komponen – komponen pneumatik sebagai control bertahap pada sistem sequensial.	Kontrol bertahap pneumatik manual	 Ceramah Praktikum Diskusi Laporan 	1x(2x100') 1x(2x70')	 Melakukan praktikum Menyusun laporan 	 Kerapian dan kesesuain gambar rangkaian kontrol yang akan digunakan Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja 	7%	1,5,6

Minggu ke	Kemampuan akhir yang diharapkan	Bahan kajian (pokok bahasan)	Metode pembelajaran	Waktu	Pengalaman belajar	Indikator/ kriteria Penilaian	Bobot Penilaian	Referen si
						 3. Ketepatan waktu menyelesesaikan problem yang diberikan 4. Ketajaman analisis pada laporan praktikum 5. Kerapian sajian laporan praktikum 		
9 10	Mahasiswa mampu mengoperasikan komponen-komponen dasar elektropneumatik dengan memperhatkan standar K3	Elektropneu matik	 Ceramah Praktiku Diskusi Laporan 	1x(2x100') 1x(2x70')	1. Melakukan praktikum 2. Menyusun laporan	 Ketepatan merangkai komponen-komponen elektropneumatik seperti relay, power suplly, dan solenoid valve Ketepatan memasang polaritas kabel pengubung pada komponen-komponen elektropneumatik Ketajaman analisis pada laporan praktikum Kerapian sajian laporan praktikum 	6%	2,3,4
11	Mahasiswa mampu membangun rangkaian control sederhana dengan memanfaatkan relay	Pengontrolan langsung dan tidak langsung	 Ceramah Praktikum Diskusi Laporan 	1x(2x100') 1x(2x70')	Melakukan praktikum Menyusun laporan	 Ketepatan memasang polaritas tegangan coil relay Ketepatan mengidentifikasi kontak NO dan NC pada relay 	6%	2,3,4

Minggu ke	Kemampuan akhir yang diharapkan	Bahan kajian (pokok bahasan)	Metode pembelajaran	Waktu	Pengalaman belajar	Indikator/ kriteria Penilaian	Bobot Penilaian	Referen si
12	Mahasiswa mampu mengkombinasikan relay sebagai rangkaian pengunci dengan output output silider kerja ganda	Rangkaian pengunci dan kontrol dua arah	1. Ceramah 2. Praktikum 3. Diskusi 4. Laporan	1x(2x100') 1x(2x70')	Melakukan praktikum Menyusun laporan	 Ketepatan membangun rangkaian pneumatic pada papan kerja Ketajaman analisis pada laporan praktikum Kerapian sajian laporan praktikum Kerapian dan kesesuain gambar rangkaian kontrol yang akan digunakan Ketepatan membangun rangkaian pneumatic pada papan kerja Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja Ketajaman analisis pada laporan praktikum Kerapian sajian laporan praktikum 	6%	2,3,4
13	Mahasiswa mampu mengkombinasikan relay dan sensor proximity untuk rangkaian control otomatis	Pengontrolan otomatis (auto return)	1. Ceramah 2. Praktikum 3. Diskusi 4. Laporan	1x(2x100') 1x(2x70')	Melakukan praktikum Menyusun laporan	Kerapian dan kesesuain gambar rangkaian kontrol yang akan digunakan Ketepatan membangun rangkaian pneumatic pada papan kerja	6%	2,3,4

Minggu ke	Kemampuan akhir yang diharapkan	Bahan kajian (pokok bahasan)	Metode pembelajaran	Waktu	Pengalaman belajar	Indikator/ kriteria Penilaian	Bobot Penilaian	Referen si
14	Mahasiswa mampu	Kontrol	1. Ceramah	1x(2x100')	1. Melakukan	 Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja Ketajaman analisis pada laporan praktikum Kerapian sajian laporan praktikum Kerapian dan kesesuain 	6%	2,3,4
	merangkai komponen elektropneumatik sebagai control sequensial berdasarkan diagram langkah	Sequensial	 Praktikum Diskusi Laporan 	1x(2x70')	praktikum 2. Menyusun laporan	gambar rangkaian kontrol yang akan digunakan 2. Ketepatan membangun rangkaian pneumatic pada papan kerja 3. Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja 4. Ketajaman analisis pada laporan praktikum 5. Kerapian sajian laporan praktikum	070	2,3,1

15	Mahasiswa mampu	Konflik	1. Ceramah	1x(2x100')	1. Melakukan	1.	Kerapian dan kesesuain	6%	2,3,4
	mengkombinasikan	Elektropneu	2. Praktikum	1x(2x70')	praktikum		gambar rangkaian kontrol		
	komponen-komponen	matik	3. Diskusi		2. Menyusun		yang akan digunakan		
	elektropnematik		4. Laporan		laporan	2.	Ketepatan membangun		
	untuk menyelesaikan		- T		1		rangkaian pneumatic pada		
	konflik sistem						papan kerja		
	elektropneumatik						1 1 3		

Minggu ke	Kemampuan akhir yang diharapkan	Bahan kajian (pokok bahasan)	Metode pembelajaran	Waktu	Pengalaman belajar	Indikator/ kriteria Penilaian	Bobot Penilaian	Referen si
16-17	berdasarkan diagram langkah Mahasiswa mampu mengkombinasikan komponen-komponen elektropnematik untuk control alat pengeling dan mesin bor	Project (alat pengeling dan mesin bor)	1. Ceramah 2. Praktikum 3. Diskusi 4. Laporan	2x(2x100') 2x(2x70')	Melakukan praktikum Menyusun laporan	 Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja Ketajaman analisis pada laporan praktikum Kerapian sajian laporan praktikum Kerapian dan kesesuain gambar rangkaian kontrol yang akan digunakan Ketepatan membangun rangkaian pneumatic pada papan kerja Rangkaian yang dibuat pada papan kerja berfungsi sesuai instruksi kerja Ketajaman analisis pada laporan praktikum Kerapian sajian laporan 	15%	2,3,4
18				τ	JAS	praktikum		

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI POLITEKNIK NEGERI CILACAP PROGRAM STUDI SARJANA TERAPAN TEKNOLOGI REKAYASA **MEKATRONIKA**

01

Jl. Dr. Soetomo No. 1, Sidakaya Cilacap, Jawa Tengah 53212

RENCANA PEMBELAJARAN SEMESTER

MATA KULIAH (N	MK)	KODE	Rumpun MK		Bobot (SKS)	SEMESTER	Tgl Penyusunan		
Robotika									
OTORISASI		Pengembang RPS		Koordinator KBK		Ketua Prodi			
		Galih Mustiko Aji, S.T., M.T		Hendi Purnata, M.T		Muhamad Yusuf, S.ST., M.T			
Capaian		yang dibebankan p							
Pembelajaran (CP)	CPL-1 (KU1)				inovatif, bermutu, dan ter lar kompetensi kerja bida		nelakukan pekerjaan yang spesifik di angkutan		
CPL-2 (KU3) Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menera sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan mengunggahnya dalam tinggi					ntau karya seni, menyusun				
	CPL-3 (KK1)	Mampu menerap mekatronika.	kan <i>sains, technolog</i>	gy, engii	neering and math (STEM) ke dalam bentuk proyek re	ekayasa teknologi		
	CPL-4 (KK4)	Mampu mengem	bangkan sistem mek	atronik	a meliputi sistem mekanik	kal, sistem elektrikal dan sis	tem control.		
	CPL-5 (P2)	Menerapkan pen	getahuan dan praktil	cum fisi	ka dan sains yang berkaita	an dengan rekayasa teknolo	gi mekatronika.		
	CPL-6 (P5)	Kemampuan mer mekatronika	nerapkan pengetahua	uan keluasan tentang perkembangan terbaru yang mencakup sejumlah topik kerekayasaan					
			Mata Kuliah (CPMI						
	CPMK – 1	Mampu menyele	saikan pekerjaan pa	ada bidang sistem kendali dengan beragam metode yang benar (CPL-1)					

CPMK – 2 Mampu memecahkan masalah pekerjaan pada bidang sistem kendali didasarkan pada pemikiran logis, inovatif, dan bertanggung jawab atas hasilnya secara mandir (CPL-2)

	CPMK – 3	Mampu menerapkan procedural praktik serta menyelesaikan permasalahan dalam bidang sistem kendali berdasarkan teorema yang sesuai (CPL-3)							
	CPMK – 4	Mampu melakukan pengujian dan pengukuran sistem kendali berdasarkan prosedur dan standar IEC agar menginterpretasi							
		dan menerapkan sesuai peruntukan. (CPL-4)							
	CPMK – 5	Menguasai pengetahuan tentang teknik pengujian sistem kendali menggunakan prosedur dan standar IEC (CPL-5)							
	CPMK-6	Menguasai konsep teoritis tentang sains terapan pada bidang sistem kendali (CPL-6)							
	CPL Sub CPl	MK							
	CPL	1. Mampu Menjelaskan aplikasi robot di industry							
		2. Mampu menganalisis kinematika dan dinamika robot industry							
	3. Mampu merancang kinematika dan dinamika robot industry								
		4. Mampu mengembangkan aplikasi robot industri							
Deskripsi Singkat MK	Mata kuliah i	a kuliah ini mempelajari robot industry dari gerak sederhana sampai beberapa proses yang digunakan							
Bahan Kajian /		casi robot di industry							
Materi		isis kinematic dan dinamik							
Pembelajaran		embangan aplikasi robot industri							
Pustaka	Utama:								
		no, dkk, Robotics: Modelling, Planning and control, Springer-Verlag Limited, 2009.							
	Pendukung:								
	1. Thon	nas R. Kurfess, 2000, Robotic and Automation Handbook, CRC Press							
	2. Frank	L. Lewis, at al., 2006, Robot Manipulator Control: Theory and Practice, Second Edition Revised and Expanded,							
	Marc	el Dekker Inc.							
	3. Robe	rt L. Williams II, Ph.D, October 2016, <i>The Delta Parallel Robot: Kinematics Solutions</i> , Mechanical Engineering,							
	Ohio	University							
	4. Anno	name, 2000, IP67 and IP65 Delta Robot Datasheet, Omron Japan							
Dosen Pengampu	Galih Musti	ko Aji, S.T., M.T							
Mata Kuliah Syarat	Sistem Kenda	ali Digital							

Minggu	Kemampuan akhir yang diharapkan	Bhn. Kajian/Pokok Bahasan	Metode Pembelajaran	Waktu	Pengalaman belajar mahasiswa	Kriteria penilaian (Indikator)	Bobot %	Reff
1	2	3	4		5	6	7	
1-2	 Mahasiswa mampu menjelaskan sejarah dan perkembangan robot industri Mahasiswa mampu menjelaskan struktur robot lengan dan robot delta, kelebihan dan kelemahannya Mahasiswa mampu menyebutkan jenisjenis joint dan peripheral yang digunakan Mahasiswa mampu menyebutkan sensor dan algoritma kontrol dalam robot industri 	 Dasar-dasar Robot Industri Sejarah dan perkembang an robot industri Struktur dasar robot industri Jenis-jenis joint dan peripheralny a Sensor dan Kontrol 	Ceramah, Simulasi/Penayangan Video, Diskusi, dan Tanya jawab	2x2x50'	 Menjelaskan sejarah robot industri Menjelaskan struktur robot lengan dan robot delta Menjelaskan jenisjenis joint dan peripheral joint Menyebutkan sensor robot industri dan algoritma kontrol 	Ketepatan dalam menjelaskan sejarah robot industri Ketepatan penjelasan tentang struktur robot industri Benar dalam menyebutkan jenis-jenis joint dan mampu menyebutkan cotoh peripheral Benar dalam menyebutkan sensor dan algorimat kontrol robot	5	1,2
3-6	 Mahasiswa mampu menerapkan forward kinematic dalam perhitungan manual dan dalam program C Mahasiswa mampu merancang invers kinematic dalam perhitungan manual dan dalam program C Mahasiswa mampu merancang program C untuk menerapkan Jacobian yang menggerakkan end efector dalam pola garis lurus atau lengkung 	 Robot lengan 2 DOF Forward Kinematic Invers Kinematic Trajectory menggunaka n Jacobian 	Ceramah, Simulasi, Diskusi, dan Tanya jawab	4x2x50'	 Menerapkan forward kinematic untuk menghitung posisi end efector Menerapkan invers kinematic untuk menghitung sudut joint Menerapkan jacobian untuk menggerakkan end efector dalam pola garis lurus atau lengkung 	Ketepatan dalam menghitung secara manual dan membuat program C forward kinematic, invers kinematic dan jacobian	5	1,2,3

7		QUIZ 1						
8-9	Mahasiswa mampu menerapkan transformasi DH untuk mencari formula forward dan invers kinematic robot lengan DOF tinggi	Robot lengan DOF tinggi Macammacam struktur (platform) robot lengan Transformasi DH	Ceramah, Simulasi, Diskusi, dan Tanya jawab	2x2x50'	Menerapkan Transformasi DH untuk mencari rumusan forward dan invers kinematic untuk robot lengan tertentu	Ketepatan dalam memformulasikan persamaan DH	10	1,4
10	 Mahasiswa mampu menjelaskan sejarah robot delta dan aplikasinya Mahasiswa mampu menjelaskan struktur dasar robot delta 	Robot Delta Sejarah penemuan robot delta dan aplikasinya Struktur dasar (platform) robot delta	Ceramah, Simulasi/Penayangan Video, Diskusi, dan Tanya jawab, presentasi kelompok	1x2x50'	 Menjelaskan sejarah penemuan dan aplikasi robot delta di industri Menjelaskan struktur dasar robot delta 	 Ketepatan dalam menjelaskan sejarah dan aplikasi robot delta di industri Ketepatan dalam menyebutkan bagian- bagian robot delta 	10	2,4
11-13	Mahasiswa mampu memformulasi, menghitung dan membuat program C untuk forward kinematic robot delta	 Forward Kinematic Robot Delta Formulasi matematik Contoh Perhitungan Program C 	Ceramah, Simulasi, Diskusi, dan Tanya jawab, presentasi kelompok	3x2x50'	Memformulasi, menghitung secara manual dan menulis program C untuk forward kinematic robot delta	Ketepatan dalam memformulasi, menghitung, dan menulis program C untuk forward kinematic robot delta	10	3
14-16	Mahasiswa mampu memformulasi, menghitung dan membuat program C untuk invers kinematic robot delta	 Invers Kinematic Robot Delta Formulasi Contoh Perhitungan Program C 	Ceramah, Simulasi, Diskusi, dan Tanya jawab, presentasi kelompok	3x2x50'	Memformulasi, menghitung secara manual dan menulis program C untuk iners kinematic robot delta	Ketepatan dalam memformulasi, menghitung, dan menulis program C untuk invers kinematic robot delta	15	3,4

17	 Mahasiswa mampu menjelaskan seknario trajectory robot delta Mahasiswa mampu menulis program C untuk mengimplementasi gerakan robot delta membentuk poligon. 	 Trajectory Robot Delta Skenario trajectory Program C robot delta menulis poligon 	Ceramah, Simulasi, Diskusi, dan Tanya jawab	1x2x50'	 Menjelaskan skenario trajectory robot delta Menulis program C untuk menggerakkan robot delta bergerak dalam pola poligon 	 Ketepatan dalam menjelaskan skenario trajectory robot delta Ketepatan dalam menulis program C robot delta bergerak dalam pola poligon 	5	2,4	
18		UAS							

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI POLITEKNIK NEGERI CILACAP PROGRAM STUDI SARJANA TERAPAN TEKNOLOGI REKAYASA MEKATRONIKA

Kode Dokumen

Jl. Dr. Soetomo No. 1, Sidakaya Cilacap, Jawa Tengah 53212

	RENCANA PEMBELAJARAN SEMESTER										
MATA KULIAH (MK)	KODE	RUMPUN MK	BOBO	T (sks)	SEMESTER	Tgl Penyusunar					
Mikrokontroler dan Sistem		Mata Kuliah Prodi	T=2	P=0	4						
Antarmuka	_										
OTORISASI/PENGESAHAN]	Dosen Pengembang RPS	Koordina	tor RMK	Ka	PRODI					
	Galih Mustiko A	Aji, S.T., M.T	Galih Mustiko Aji,	S.T., M.T	Muhamad Yu	Muhamad Yusuf, S.ST., M.T					
Capaian	CPL – PRODI y	CPL – PRODI yang Dibebankan pada MK									
Pembelajaran											
	CPL-2 (KU8)	mampu melakukan proses evaluasi diri t mampu mengelola pembelajaran secara		erja yang berada dil	oawah tanggung ja	wabnya, dan					
	CPL-3 (KK3)	Mampu mendesain/merancang dan mela sistem mekanikal, sistem elektrikal dan	ksanakan eksperime	n skala laboratoriun	n pada sistem meka	atronika meliputi					
	CPL-4 (KK6)	Mampu menguji sistem mekatronika me	liputi sistem mekanil	kal, sistem elektrika	al dan sistem kontro	ol					
	CPL-5 (PP3)	Menerapkan pengetahuan komputasi yan kompleks	ng diperlukan untuk r	nenganalisa dan me	erancang perangkat	peras atau sistem					
	CPL-6 (PP6)	Menerapkan kemampuan memformulasi beberapa alternatif solusi terkait permasi	•	•		erta menyajikan					
	Capaian Pembe	lajaran Mata Kuliah (CPMK)	<u> </u>								
	CPMK1	Mampu merancang komponen pendukung sistem mikroprosesor sesuai dengan keperluan									
CPMK2 Mampu merancang sistem elektronik berbasis mikrokontroler CPMK3 Mampu merancang program untuk mikroprosesor dan mikrokontroler											

Kemampuan Al	Kemampuan Akhir Tiap Tahapan Belajar (Sub-CPMK)					
Sub-CPMK1	Memahami rencana perkuliahan, dan tujuan MK					
Sub-CPMK2	Menjelaskan diagram blok mikroprosesor					

	Sub-CPMK3	Merancang hardware sistem berbasis mikroprosesor dan I/O				
	Sub-CPMK4	Menjelaskan dan mengenal interupsi mikroprosesor				
	Sub-CPMK5	Menjawab dan menjelaskan pertanyaan terkait memory mapping, antarmuka, dan I/O				
	Sub-CPMK6	Mengenal program sederhana mikroprosesor 8085 menggunakan bahasa assembly				
	Sub-CPMK7	Membuat program sederhana mikroprosesor 8085 menggunakan bahasa assembly				
	Sub-CPMK8	Menjawab dan menjelaskan pertanyaan terkait memory mapping dan pemrograman mikroprosesor 8085				
		menggunakan bahasa assembly				
	Sub-CPMK9	Memahami arsitektur mikrokontroler arduino				
	Sub-	Mengenal dan membuat program sederhana mikrokontroler arduino				
	CPMK10					
	Sub-	Membuat program mikrokontroler arduino				
	CPMK11					
	Sub-	Memrogram dan menuliskan pada mikrokontroler arduino				
	CPMK12					
	Sub- CPMK13	Membuat sistem elektronik berbasis mikrokontroler arduino				
	Sub-	Membuat sistem elektronik berbasis mikrokontroler arduino				
	CPMK14	Weinodat sistem elektronik beroasis mikrokontroler ardanio				
	Sub-	Membuat sistem elektronik berbasis mikrokontroler arduino				
	CPMK15					
Doolaningi Singlest MV) (A) (I = 4 = 1 = 1					
Deskripsi Singkat MK	MMata kuliah ini membahas tentang arsitektur mikrokontroler perangkat intruksi model pengelamatan sistem antarmuka					
	(interfacing m	ikrokontroler), dasar pemograman, dan aplikasi sederhana sistem mikrokontroler				

ajian : Materi	1. Organisa	si sistem mikroprosesor dan piranti- piranti sistem mikroprosesor							
pembelajaran	2. Antarmu	ka memori							
	3. Antarmu	ka I/O P2RP – LP3M UB							
	4. Penanga	4. Penanganan interupsi pada mikroprosesor dan penggunaan interupsi untuk menangani perangkat periferal							
	5. Pemrogr	5. Pemrograman bahasa Assembly untuk mikroprosesor 8085 (Sim8085 μP Simulator)							
	6. Sistem n	. Sistem mikrokontroler arduino							
	7. Pemrogr	7. Pemrograman mikrokontroler arduino menggunakan bahasa C melalui a							
Pustaka	Utama	1) John Crisp, Introduction to Microprocessors and microcontrollers. OXFORD: Newnes, 2005.							
		2) D. V. Gadre, V. Dhananjay, Programming and Customizing the AVR Microcontroller. New York: Mc							
		Graw Hill, 2001.							
		3) E. Mandado, J. Macros, and S. A. Perez, Programmable Logic Devices and Logic Controllers.							
		Englewood Cliffs: Prentice Hall Inc, 1995.							
	Pendukung	1.							
Dosen Pengampu									
Mt Kuliah Syarat	Pemograman; elektronika dasar;								

Minggu Ke-	Kemampuan Akhir yang Diharapan	Bahan Kajian / Pokok Bahasan	Metode Pembelajaran	Waktu Pembelajaran	Pengalaman Belajar Mahasiswa	Indikator	Bobot	Acuan
1	Memahami rencana perkuliahan, dan tujuan MK	1.1 Ketepatan menjelaskan tentang mikrokontroler 1.2 Ketepatan menjelaskan tentang	Ceramah dan tanya jawab	2 x 50	Pendahuluan: Pengantar MK, Rencana perkuliahan, overview materi perkuliahan, sistem penilaian	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas		

	•	mikroprosesor 1.3 Ketepatan				Ringkasan		
		membedakan mikrokontroler dan mikroprosesor						
		1.4 Ketepatan mendiskripsika n						
		perkembangan teknologi mikrokontroler dan						
		implementasin ya di industri dan						
		masyarakat.						
2	diagram blok mikroprosesor	Imilizione occore A I I I	Ceramah dan tanya jawab	2 x 50	Kemampuan mahasiswa memahami jenis operasional, perangkat, eksplorasi, karakteristik data	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan		

	Merancang hardware sistem berbasis mikroprosesor dan memori	Sistem antarmuka: sistem bus, memory mapping, address decoder	Ceramah dan tanya jawab	2 x 50	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	
4	Merancang hardware sistem berbasis mikroprosesor dan I/O	Bus data, bus alamat, bus kontrol, I/O periferal	Ceramah dan tanya jawab	2 x 50	Mampu mendesain suatu sistem	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	
5	Menjelaskan dan mengenal interupsi mikroprosesor	Penggunaan dan mekanisme interupsi dalam mikroprosesor 8085	Ceramah, tanya jawab, dan diskusi	2 x 50	Kemampuan mahasiswa memahami jenis operasional, perangkat, eksplorasi, karakteristik data.	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	
6	Menjawab dan menjelaskan pertanyaan terkait memory mapping, antarmuka, dan I/O	Memory mapping, antarmuka, dan I/O	Ceramah, tanya jawab, dan diskusi	2 x 50	Mampu mendesain suatu sistem	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	

	Mengenal program sederhana mikroprosesor 8085 menggunakan bahasa assembly	Pemrograman Assembly 8085	Ceramah, tanya jawab, dan diskusi	2 x 50	Kemampuan mahasiswa memahami jenis operasional, perangkat, eksplorasi, karakteristik data	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	
8	Membuat program sederhana mikroprosesor 8085 menggunakan bahasa assembly	Pemrograman Assembly 8085	Ceramah, tanya jawab, dan diskusi	2 x 50	Mampu mendesain suatu sistem	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	
9	Menjawab dan menjelaskan pertanyaan terkait memory mapping dan pemrograman mikroprosesor 8085 menggunakan bahasa assembly	Materi sebelumnya (6-8)	UTS (tulis)	2 x 50	Mampu mendesain suatu sistem	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	
10	Memahami arsitektur mikrokontroler arduino	Arsitektur dan piranti dalam mikrokontroler Arduino	Ceramah, tanya jawab, dan diskusi	2 x 50	Kemampuan mahasiswa memahami jenis operasional, perangkat, eksplorasi, karakteristik dataKriteria	: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasa	

	Mengenal dan membuat program sederhana mikrokontroler arduino	Arduino IDE dan pemrogramannya	Ceramah, tanya jawab, dan diskusi	2 x 50	Mampu mendesain suatu sistem	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan
12	Membuat program mikrokontroler arduino	Pemrograman arduino terkait I/O dan ADC	Ceramah, tanya jawab, praktik, dan diskusi	2 x 50	Mampu mendesain suatu sistem	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan
13	Memrogram dan menuliskan pada mikrokontroler arduino	Pemrograman arduino terkait serial communication dan interupt	Ceramah, tanya jawab, praktik, dan diskusi	2 x 50	Mampu mendesain suatu sistem	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan
14	Membuat sistem elektronik berbasis mikrokontroler arduino	Desain praktis	Ceramah, tanya jawab, praktik, dan diskusi	2 x 50	Mampu mendesain suatu sistem	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan

	Membuat sistem elektronik berbasis mikrokontroler arduino	Ceramah, tanya jawab, praktik, dan diskusi	2 x 50	Merancang suatu prototipe	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	
16 - 17	Membuat sistem elektronik berbasis mikrokontroler arduino	Ceramah, tanya jawab, praktik, dan diskusi	2 x 2 x 50	Mampu melakukan penataan dan penyajian data hasil eksperimen.	Kriteria: Tepat menjawab Bentuk: QA/tanya-jawab dalam kuliah, dan Tugas Ringkasan	
18	UAS					

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI POLITEKNIK NEGERI CILACAP PROGRAM STUDI SARJANA TERAPAN TEKNOLOGI REKAYASA MEKATRONIKA

Kode Dokumen

Jl. Dr. Soetomo No. 1, Sidakaya Cilacap, Jawa Tengah 53212

			RENCANA PEMBELAJARAN SEMESTER								
MATA KULIAH(MK)	KODE	RUMPUN MK	BOBOT (sks)		SEMESTER	Tgl Penyusunan					
Praktek Pengolahan Sinyal		Mata Kuliah Inti Program Studi	T=0	P =2	4						
OTORISASI/PENGESAHAN	Dosen Penger	nbang RPS	Koordinator KB	K	Ka PRODI						
		o Aji, S.T., M.T	Galih Mustiko Aji, S.T., M.T Muhamad			usuf, S.ST., M.T					
Capaian	CPL – PRODI yang Dibebankan pada MK										
Pembelajaran	CPL1(S9)	Menunjukkan sikap bertanggungjaw	Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahliannya secara mandiri								
	CPL2(KU1)	Mampu menerapkan pemikiran logis, kritis, inovatif, bermutu, dan terukur dalam melakukan pekerjaan yang spesifik di bidang keahliannya serta sesuai dengan standar kompetensi kerja bidang yang bersangkutan									
	CPL3(KU3)	Mampu mengkaji kasus penerapan ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora sesuai dengan bidang keahliannya dalam rangka menghasilkan prototype, prosedur baku, desain atau karya seni, menyusun hasil kajiannya dalam bentuk kertas kerja, spesifikasi desain, atau esai seni, dan mengunggahnya dalam laman perguruan tinggi									
	CPL4(KK1)	Mampu menerapkan sains, technolo teknologi mekatronika	Mampu menerapkan sains, technology, engineering and math (STEM) ke dalam bentuk proyek rekayasa teknologi mekatronika								
	CPL5(KK4)	Mampu mengembangkan sistem mekatronika meliputi sistem mekanikal, sistem elektrikal dan sistem kontrol									
	Capaian Pemb	pelajaran Mata Kuliah (CPMK)									
	CPMK1	Mahasiswa mampu merangkai dan menghitung rangkaian pembagi tegangan dan rangkaian jembatan (S9, KU1, KU 3, KK 1, KK4)									
	CPMK2	Mahasiswa mampu merangkai dan r	nenghitung rangkaia	n peubah level siny	ral (S9, P5, KU 1,	KU 3, KK 1, KK4)					

СРМК3	Mahasiswa mampu merangkai dan menghitung rangkaian penjumlah dan pengurang tegangan (S9, KU 1, KU3, KK 1, KK4)					
CPMK4	Mahasiswa mampu merangkai dan menghitung rangkaian pengkonversi sinyal (S9, KU 1, KU 3, KK 1, KK4)					
Kemampuan Akhir Tiap Tahapan Belajar (Sub-CPMK)						

Mt Kuliah Syarat	-							
Dosen Pengampu	-							
Pustaka	Utama	 Malvino, A.P., Prinsip-prinsip Elektronika, Jilid 2, Erlangga, Jakarta, Franco. Sergio, Design with Operasional Amplifier and Analog Integrated Circuit, McGrawHill, 						
Deskripsi Singkat MK	Dalam perkuliahan ini dibahas tentang rangkaian pasif (pembagi tegangan dan jembatan), peubah level sinyal (inverting amplifier, non inverting amplifier, differensial amplifier, dan instrumen amplifier),penjumlah dan pengurang sinyal, konversi sinyal ADC dan DAC.							
	Sub- CPMK11	Mahasiswa mampu merangkai dan menghitung rangkaian DAC R2R (CPMK 4)						
	Sub- CPMK10	Mahasiswa mampu merangkai dan menghitung rangkaian DAC R-Weigted (CPMK 4)						
	Sub-CPMK9	Mahasiswa mampu menghitung konversi ADC (CPMK 4)						
	Sub-CPMK8	Mahasiswa mampu merangkai dan menghitung rangkaian pengurang tegangan (CPMK 3)						
	Sub-CPMK7	Mahasiswa mampu merangkai dan menghitung rangkaian penjumlah tegangan (CPMK 3)						
	Sub-CPMK6	Mahasiswa mampu merangkai dan menghitung rangkaian instrumen amplifier(CPMK 2)						
	Sub-CPMK5	Mahasiswa mampu merangkai dan menghitung rangkaian difirensial amplifier(CPMK 2)						
	Sub-CPMK4	Mahasiswa mampu merangkai dan menghitung rangkaian non-inverting amplifier(CPMK 2)						
	Sub-CPMK3	Mahasiswa mampu merangkai dan menghitung rangkaian jembatan (CPMK 1) Mahasiswa mampu merangkai dan menghitung rangkaian inverting amplifier(CPMK 2)						
	Sub-CPMK1 Sub-CPMK2	Mahasiswa mampu merangkai dan menghitung rangkaian pembagi tegangan (CPMK 1)						

Mingg u	Kemampuan Akhir yang	Bahan Kajian / Pokok Bahasan	Metode Pembelajaran	Waktu Pembelajaran	Pengalaman Belajar Mahasiswa	Kriteria Penilaian dan Indikator	Bobot	Acuan
Ke-	Diharapan							

.,3	Mahasiswa mampu membuat dan menghitung rangkaian jembatan dan rangkaian pembagi tegangan untuk pengkondisi sinyal	Rangkaian pembagi tegangan1. Rangkaia n jembatan	 Kuliah Mimbar (klasikal) Diskusi Praktek 	TM: 3x50"	Menjelaskan dan menghitung rangkaian pembagi tegangan dan rangkaian jembatan	* Kemampuan dalam membuat dan menghitung rangkaian pembagi tegangan * Kemampuan dalam membuat dan menghitung rangkaian jembatan	20%	1,2
4,5,6,7	Mahasiswa mampu membuat dan menghitung rangkaian peubah level sinyal	 Inverting amplifier non inverting amplifier 	1. Kuliah Mimbar (klasikal)	TM: 4x50"	Menjelaskan dan menghitung rangkaian peubah level sinyal	* Kemampuan menjelaskan dengan tepat dan jelas tentang peubah level sinyal	25%	1,2

		 Diferensia amplifier Instrumen amplifier 	2. Diskusi3. Praktek					
8	Mahasiswa mampu mempraktekan materi satu sampai dengan tiga	Mereview materi satu sampai dengan dua	 Kuliah Mimbar (klasikal) Diskusi Praktek 	TM: 1x50"	Mereview materi satu sampai dengan tiga	* Kemampuan menjawab tes tertulis untuk materi pertama sampai dengan ketiga	5%	1,2
9	UTS							
10,11,12	Mahasiswa mampu membuat dan menghitung rangkaian penjumlah dan pengurang sinyal	Rangkaian penjumlah tegangan Rangkaian pengurang tegangan	 Kuliah Mimbar (klasikal) Diskusi Praktek 	TM: 3x50"	Menjelaskan dan menghitung rangkaian penjumlah dan pengurang tegangan	* Kemampuan menjelaskan dengan tepat dan jelas tentang rangkaian penjumlah dan pengurang tegangan	20%	1,2
13,14,15, 16	Mahasiswa mampu menjelaskan tentang pengkonversi sinyal	1. ADC 1. DAC	 Kuliah Mimbar (klasikal) Diskusi Praktek 	TM: 4x50"	Menjelaskan dan menghitung rangkaian pengkonversi sinyal	* Kemampuan menjelaskan dengan tepat dan jelas rangkaian pengkonversi sinyal	25%	1,2

17	Mahasiswa mampu menjelaskan materi empat sampai dengan tujuh	Mereview materi tiga sampai dengan empat	Kuliah Mimbar (klasikal) Diskusi Praktek	TM: 1x50"	Mereview materi empat sampai dengan tujuh	* Kemampuan menjawab tes tertulis untuk materi empat sampai dengan tujuh	5%	1,2
18	UAS							